Mechanics of Materials, SI Edition
9th Edition
ISBN: 9781337093354
Author: Barry J. Goodno, James M. Gere
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 7.5.2P
Solve the preceding problem if the thickness of the steel plate is. t = 12 mm. the gage readings are
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let's consider a rod having a solid circular cross-section with diameter of 4 mm and it is made of a material having a Young's modulus E = 120 Gpa and a Poisson's ratio of 0.33. If a tensile force F is subjected to that rod cross-section, the diameter becomes 3.995 mm. determine the applied force F. Select one: O F= 2856 N OF = 2285 N OF = 7140N OF = 5712 N OF = 3427 N O F = 8568 N
Let’s consider a rod having a solid circular cross-section with diameter of 6 mm and it is made of a material having a Young’s modulus E = 200 Gpa and a Poisson’s ratio of 0.3. If a tensile force F is subjected to that rod cross-section, the diameter becomes 5.998 mm. determine the applied force F.
Select one:
F = 6283 N
F = 10472 N
F = 4189 N
F = 5236 N
F = 13090 N
F = 15708 N
A rectangular steel block is 4 inches long in the x direction, 2 inches long in the y direction, and 3 inches long in the z direction. The block is subjected to a triaxial loading of three uniformly distributed forces as follows: 50 kips tension in the x direction, 65 kips compression in the y direction, and 55 kips tension in the z direction. If v = 0.30 and E = 29 x 10° psi. What is the total elongation in the x-direction?
Chapter 7 Solutions
Mechanics of Materials, SI Edition
Ch. 7 - An clement m plane stress from the frame of a...Ch. 7 - Solve the preceding problem for an element in...Ch. 7 - The stresses on an element are sx= 1000 Psi. sy=...Ch. 7 - .4 The stresses on an clement arc known to be sx=...Ch. 7 - The stresses acting on element A on the web of a...Ch. 7 - Solve the preceding problem if the stresses acting...Ch. 7 - The stresses acting on element B on the web of a...Ch. 7 - An element in plane stress on the fuselage of an...Ch. 7 - The stresses acting on element B (see figure part...Ch. 7 - Solve the preceding problem if the normal and...
Ch. 7 - The polyethylene liner of a settling pond is...Ch. 7 - Solve the preceding problem if the norm al and...Ch. 7 - Two steel rods are welded together (see figure):...Ch. 7 - Repeat the previous problem using ? = 50° and...Ch. 7 - A rectangular plate of dimensions 3.0 in. × 5.0...Ch. 7 - Solve the preceding problem for a plate of...Ch. 7 - A simply supported beam is subjected to point load...Ch. 7 - Repeat the previous problem using sx= 12 MPa.Ch. 7 - At a point on the surface of an elliptical...Ch. 7 - Solve the preceding problem for sx= 11 MPa and...Ch. 7 - An clement m plane stress from the frame of a...Ch. 7 - Solve the preceding problem for the element shown...Ch. 7 - : A gusset plate on a truss bridge is in plane...Ch. 7 - The surface of an airplane wing is subjected to...Ch. 7 - At a point on the web of a girder on an overhead...Ch. 7 - -26 A rectangular plate of dimensions 125 mm × 75...Ch. 7 - -27 A square plate with side dimension of 2 in. is...Ch. 7 - The stresses acting on an element are x= 750 psi,...Ch. 7 - Repeat the preceding problem using sx= 5.5 MPa....Ch. 7 - An element in plane stress is subjected to...Ch. 7 - -4. - An element in plane stress is subjected to...Ch. 7 - An element in plane stress is subjected to...Ch. 7 - The stresses acting on element A in the web of a...Ch. 7 - The normal and shear stresses acting on element A...Ch. 7 - An element in plane stress from the fuselage of an...Ch. 7 - -9The stresses acting on element B in the web of a...Ch. 7 - The normal and shear stresses acting on element B...Ch. 7 - ‘7.3-11 The stresses on an element are sx= -300...Ch. 7 - - 7.3-12 A simply supported beam is subjected to...Ch. 7 - A shear wall in a reinforced concrete building is...Ch. 7 - The state of stress on an element along the...Ch. 7 - -15 Repeat the preceding problem using ??. = - 750...Ch. 7 - A propeller shaft subjected to combined torsion...Ch. 7 - 3-17 The stresses at a point along a beam...Ch. 7 - -18 through 7.3-22 An element in plane stress (see...Ch. 7 - -18 through 7.3-22 An element in plane stress (see...Ch. 7 - -18 through 7.3-22 An element in plane stress (see...Ch. 7 - -18 through 7.3-22 An element in plane stress (see...Ch. 7 - -18 through 7.3-22 An element in plane stress (see...Ch. 7 - At a point on the web of a girder on a gantry...Ch. 7 - The stresses acting on a stress element on the arm...Ch. 7 - The stresses at a point on the down tube of a...Ch. 7 - An element in plane stress on the surface of an...Ch. 7 - A simply supported wood beam is subjected to point...Ch. 7 - A simply supported wood beam is subjected to point...Ch. 7 - Prob. 7.4.1PCh. 7 - .4-2 An element in uniaxial stress is subjected to...Ch. 7 - An element on the gusset plate in Problem 7.2-23...Ch. 7 - An element on the top surface of the fuel tanker...Ch. 7 - An element on the top surface of the fuel tanker...Ch. 7 - An element in biaxial stress is subjected to...Ch. 7 - • - 7.4-7 An element on the surface of a drive...Ch. 7 - - A specimen used in a coupon test has norm al...Ch. 7 - A specimen used in a coupon test is shown in the...Ch. 7 - The rotor shaft of a helicopter (see figure part...Ch. 7 - An element in pure shear is subjected to stresses...Ch. 7 - An clement in plane stress is subjected to...Ch. 7 - Prob. 7.4.13PCh. 7 - An clement in plane stress is subjected to...Ch. 7 - An clement in plane stress is subjected to...Ch. 7 - An clement in plane stress is subjected to...Ch. 7 - Prob. 7.4.17PCh. 7 - -18 through 7.4-25 An clement in plane stress is...Ch. 7 - -18 through 7.4-25 An clement in plane stress is...Ch. 7 - Prob. 7.4.20PCh. 7 - -18 through 7.4-25 An clement in plane stress is...Ch. 7 - Through 7.4-25 An clement in plane stress is...Ch. 7 - -18 through 7.4-25 An clement in plane stress is...Ch. 7 - through 7.4-25 An clement in plane stress is...Ch. 7 - -18 through 7.4-25 An clement in plane stress is...Ch. 7 - 1 A rectangular steel plate with thickness t = 5/8...Ch. 7 - Solve the preceding problem if the thickness of...Ch. 7 - The state of stress on an element of material is...Ch. 7 - An element of a material is subjected to plane...Ch. 7 - Assume that the normal strains x and y , for an...Ch. 7 - A cast-iron plate in biaxial stress is subjected...Ch. 7 - Solve the preceding problem for a steel plate with...Ch. 7 - • - 3 A rectangular plate in biaxial stress (see...Ch. 7 - Solve the preceding problem for an aluminum plate...Ch. 7 - A brass cube of 48 mm on each edge is comp ressed...Ch. 7 - 7.5-11 in. cube of concrete (E = 4.5 X 106 psi. v...Ch. 7 - -12 A square plate of a width h and thickness t is...Ch. 7 - Solve the preceding problem for an aluminum plate...Ch. 7 - A circle of a diameter d = 200 mm is etched on a...Ch. 7 - The normal stress on an elastomeric rubber pad in...Ch. 7 - A rubber sheet in biaxial stress is subjected to...Ch. 7 - An element of aluminum is subjected to tri-axial...Ch. 7 - An element of aluminum is subjected to tri- axial...Ch. 7 - -3 An element of aluminum in the form of a...Ch. 7 - Solve the preceding problem if the element is...Ch. 7 - A cube of cast iron with sides of length a = 4.0...Ch. 7 - Solve the preceding problem if the cube is granite...Ch. 7 - An element of aluminum is subjected to iriaxial...Ch. 7 - Prob. 7.6.8PCh. 7 - A rubber cylinder R of length L and cross-...Ch. 7 - A block R of rubber is confined between plane...Ch. 7 - -11 A rubber cube R of a side L = 3 in. and cross-...Ch. 7 - A copper bar with a square cross section is...Ch. 7 - A solid spherical ball of magnesium alloy (E = 6.5...Ch. 7 - A solid steel sphere (E = 210 GPa, v = 0.3) is...Ch. 7 - Prob. 7.6.15PCh. 7 - An element of material in plain strain has the...Ch. 7 - An clement of material in plain strain has the...Ch. 7 - An element of material in plain strain is...Ch. 7 - An element of material in plain strain is...Ch. 7 - A thin rectangular plate in biaxial stress is...Ch. 7 - Prob. 7.7.6PCh. 7 - A thin square plate in biaxial stress is subjected...Ch. 7 - Prob. 7.7.8PCh. 7 - An clement of material subjected to plane strain...Ch. 7 - Solve the preceding problem for the following...Ch. 7 - The strains for an element of material in plane...Ch. 7 - Solve the preceding problem for the following...Ch. 7 - An clement of material in plane strain (see...Ch. 7 - Solve the preceding problem for the following...Ch. 7 - A brass plate with a modulus of elastici ty E = 16...Ch. 7 - Solve the preceding problem if the plate is made...Ch. 7 - An element in plane stress is subjected to...Ch. 7 - Prob. 7.7.18PCh. 7 - During a test of an airplane wing, the strain gage...Ch. 7 - A strain rosette (see figure) mounted on the...Ch. 7 - A solid circular bar with a diameter of d = 1.25...Ch. 7 - A cantilever beam with a rectangular cross section...Ch. 7 - Solve the preceding problem if the cross-...Ch. 7 - A 600 strain rosette, or delta rosette, consists...Ch. 7 - On the surface of a structural component in a...Ch. 7 - - 7.2-26 The strains on the surface of an...Ch. 7 - Solve Problem 7.7-9 by using Mohr’s circle for...Ch. 7 - 7.7-28 Solve Problem 7.7-10 by using Mohr’s circle...Ch. 7 - Solve Problem 7.7-11 by using Mohr’s circle for...Ch. 7 - Solve Problem 7.7-12 by using Mohr’s circle for...Ch. 7 - Solve Problem 7.7-13 by using Mohr’s circle for...Ch. 7 - Prob. 7.7.32P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Solve the preceding problem for the following data: diameter LO m, thickness 48 mm, pressure 22 MPa, modulus 210 GPa. and Poisson's ratio 0.29arrow_forwardSolve the preceding problem if the cube is granite (E = 80 GPa, v = 0.25) with dimensions E = 89 mm and compressive strains E = 690 X l0-6 and = = 255 X 10-6. For part (c) of Problem 7.6-5. find the maximum value of cr when the change in volume must be limited to 0.11%. For part. find the required value of when the strain energy must be 33 J.arrow_forwardSolve the preceding problem for a W 200 × 41,7 shape with h = 166 mm, h = 205 mm. rw = 7.24 mm, tE= ILS mm,andV = 38 kN.arrow_forward
- Solve the preceding problem if the plate is made of aluminum with E = 72 GPa and Poisson’s ratio v = 0.33. The plate is loaded in biaxial stress with normal stress sx= 79 MPa, angle Ø = 18°, and the strain measured by the gage is e = 925 × 10-6.arrow_forwardA cube of cast iron with sides of length a = 4.0 in. (see figure) is tested in a laboratory under triaxialsire.ss. Gages mounted on the testing machine show that the compressive strains in the material arc a = -225 X l06and,ay = 37.5 X l0_. Determine the following quantities: (a) the norm al stresses i. r,.. and acting on the x, y, and z faces of the cube; (b) the maximum shear stress r in the material; (C) the change ..W in the volume of the cube: (d) the strain energy U stored in the cube; (e) the maximum value of s when the change in volume must be limited to O.O28%; and (f) the required value of when the strain energy must be 38 in.-lb. (Assume £ = 14,000 ksi and v = 0.25.)arrow_forwardLet's consider a rod having a solid circular cross-section with diameter of 6 mm and it is made of a material having a Young's modulus E = 200 Gpa and a Poisson's ratio of 0.3. If a tensile force F is subjected to that rod cross-section, the diameter becomes 5.995 mm. determine the applied force F. Select one: O F=15708N O F= 10472 N O F=5236 N O F= 13090 N O F=6283 N O F=4189 Narrow_forward
- Let's consider a rod having a solid circular cross-section with diameter of 4 mm and it is made of a material having a Young's modulus E = 200 Gpa and a Poisson's ratio of 0.3. If a tensile force F is subjected to that rod cross-section, the diameter becomes 3.995 mm. determine the applied force F. Select one: F = 10472 N O F = 6283N O F= 15708 N O F = 4189N O F = 5236 N O F = 13090 N Clear my choicearrow_forwardPlease show complete solution and box the final answerarrow_forwardLet's consider a rod having a solid circular cross-section with diameter of 6 mm and it is made of a material having a Young's modulus E = 200 Gpa and a Poisson's ratio of 0.3. If a tensile force F is subjected to that rod cross- section, the diameter becomes 5.995 mm. determine the applied force F. Select one: F = 6283 N F = 4189 N F = 5236 N F = 10472 N F = 15708 N O F = 13090 Narrow_forward
- The magnitude of force (F) if Al = 0.06 m: F = kx F = (500)(0.06) F = 30 N Homework A hollow cylinder 2 m long has an outside diameter of 50mm and inside diameter of 30mm. If the cylinder is carrying a load of 25 KN. FInd the stress in cylinder, also find deformation of the cylinder E=100 Gpa. (Ans: Stress=20.0 N/mm2, Deformation= 0.4 mm) A load of 5KN is to be raised with the help of a steel wire. Find the minimum diameter of wire if stress is not to exceed 100 MPa. For more solved problems: (Ans: d=7.98mm)arrow_forwardLet's consider a rod having a solid circular cross- section with diameter of 4 mm and it is made of a material having a Young's modulus E = 120 Gpa and a Poisson's ratio of 0.33. If a tensile force F is subjected to that rod cross-section, the diameter becomes 3.995 mm. determine the applied force F. Select one: F = 3427 N F = 2856 N F = 5712 N F = 8568 N F = 7140 N F = 2285 Narrow_forward(A) Q: A 400 mm external diameter steel cylinder with a nominal internal diameter of 240 mm is shrunk onto another steel cylinder of 240 mm external diameter and 140 mm internal diameter. The radial interference 8 is 0.3 mm. Use Young's Modulus E = 200 GPa and Poisson's Ratio n = 0.3. Find: tangential stress at the outer surface of the inner cylinder; 2. tangential stress at the inner surface of the outer cylinder; and 3. radial stress at the junction.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY