-3 An element of aluminum in the form of a rectangular parallelepiped (see figure) of dimensions a = 5.5 in., h = 4.5 in, and c = 3.5 in. is subjected to iriaxial stresses = 12,500 psi, o. = —5000 psi, and ci. = —1400 psi acting on the x,i, and z faces, respectively.
Determine the following quantities: (a) the maxim um shear stress in the material; (b) the changes ..la, .11. and 1c in the dimensions of the element:
(C) the change .IJ’ in the volume: (d) the strain energy U stored in the element: (e) the maximum value of cr1
when the change in volume must be limited to 0.021%; and (f) the required value of o when the strain energy must be 900 in.-lb. (Assume E = 10,400 ksi and v = 0.33.)
(a)
The maximum shear stress in the material.
Answer to Problem 7.6.3P
The maximum shear stress on the material is
Explanation of Solution
Given information:
The aluminium element of length
Explanation:
Write the expression for the maximum shear stress.
Here, the maximum shear stress is
Calculation:
Since no shear stresses act on the parallelepiped,
Substitute,
Conclusion:
The maximum shear stress on the material is
(b)
The changes in the dimensions of the element.
Answer to Problem 7.6.3P
The change in length is
The change in height is
The change in width is
Explanation of Solution
Write the expression for the strain along
Here, the strain in the
Write the expression for strain in
Here, the strain in
Write the expression for strain in
Here, the strain in
Write the expression for the change in length.
Here, the length of element is
Write the expression for change in height.
Here, the height of element is
Write the expression for the change in width.
Here, the width of the element is
Calculation:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Conclusion:
The change in length is
The change in height is
The change in width is
(c)
The change in the volume of the element.
Answer to Problem 7.6.3P
The change in the volume is
Explanation of Solution
Write the expression for the change in the volume.
Here, the change in volume is
Calculation:
Substitute
Conclusion:
The change in the volume is
(d)
The strain energy stored in the element.
Answer to Problem 7.6.3P
The strain energy stored in the element is
Explanation of Solution
Write the expression for the strain energy.
Here, the strain energy is
Calculation:
Substitute
Conclusion:
The strain energy stored in the element is
(e)
The maximum value of normal stress along the
Answer to Problem 7.6.3P
The maximum value of normal stress along the
Explanation of Solution
Given information:
The change in volume is limited to
Explanation:
Write the expression for the change in volume.
Calculation:
Substitute
Conclusion:
The maximum value of normal stress along the
(f)
The required value of normal stress along the
Answer to Problem 7.6.3P
The required value of the normal stress along the
Explanation of Solution
Given information:
The strain energy of the system is
Explanation:
Write the expression for the strain energy in terms of stresses using Hooke’s law.
Calculation:
Substitute
Solve the quadratic equation for obtaining the value of
Conclusion:
The required value of the normal stress along the
Want to see more full solutions like this?
Chapter 7 Solutions
Mechanics of Materials, SI Edition
- The primary material used in the production of glass products is silica sand. True or Falsearrow_forwardWhich one of the following is the most common polymer type in fiber-reinforced polymer composites? thermosets thermoplastics elastomers none of the abovearrow_forwardA pattern for a product is larger than the actual finished part. True or Falsearrow_forward
- Two forces are applied as shown to a hook support. The magnitude of P is 38 N. 50 N 25° DG a 터 Using trigonometry, determine the required angle a such that the resultant R of the two forces applied to the support will be horizontal. The value of a isarrow_forwardNo chatgpt pls will upvotearrow_forward101 the three shafts if the diameter ratio is 2 (D/d = 2)? Ans. na, tension = 1.21, na, bending = 1.19, na, torsion = 1.17. 6.32 A material with a yield strength of S₁ = 350 MPa is subjected to the stress state shown in Sketch c. What is the factor of safety based on the maximum shear stress and distortion energy theories? Ans. For MSST, n, = 11.67. 50 MPa 85 MPa 20 MPa 70 MPa Sketch c, for Problems 6.32 and 6.33arrow_forward
- Can you draw the left view of the first orthographic projectionarrow_forwardImportant: I've posted this question twice and received incorrect answers. I've clearly stated that I don't require AI-generated working out. I need a genuine, expert-written solution with proper working. If you can't provide that, refer this question to someone who can please!. Note: Please provide a clear, step-by-step handwritten solution (no AI involvement). I require an expert-level answer and will assess it based on quality and accuracy with that I'll give it a thumbs up or down!. Hence, refer to the provided image for clarity. Double-check everything for correctness before submitting. Thank you!arrow_forwardNote: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting appreciate your time and effort!. Question:arrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning