Chemistry Principles And Practice
Chemistry Principles And Practice
3rd Edition
ISBN: 9781305295803
Author: David Reger; Scott Ball; Daniel Goode
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 7, Problem 7.30QE

(a)

Interpretation Introduction

Interpretation:

The wavelength of light of frequency 9.83×1014 Hz has to be determined.

Concept Introduction:

The wave nature of any light can be described by its frequency, wavelength, and amplitude. The wavelength (λ, lambda) of the light is defined as the distance between two successive peaks. Its SI unit is meter. The frequency (v) is defined as the number of waves that can pass through the one point in 1 second. Its SI unit is s1. The amplitude (A) of the light wave is maximum height of a wave.

The relation between frequency (v) and wavelength (λ) of the light is as follows:

  v=cλ        (1)

Here, c is the speed of light and its value is 3.00×108 m/s.

The relation between the energy (E) of a photon and frequency (v) is as follows:

  E=hv        (2)

Here, h is known as Plank’s constant and its value is 6.626×1034 Js.

(a)

Expert Solution
Check Mark

Answer to Problem 7.30QE

The wavelength of light is 3.05×107 m .

Explanation of Solution

Rearrange equation (1) to calculate λ as follows:

  λ=cv        (3)

Substitute 9.83×1014 Hz for v and 3.00×108 m/s for c in equation (3)

  λ=(3.00×108 m/s9.83×1014 Hz)(1 Hz1 s1)=3.05×107 m 

(b)

Interpretation Introduction

Interpretation:

The energy of one photon for light of frequency 9.83×1014 Hz has to be determined.

Concept Introduction:

Refer to part (a).

(b)

Expert Solution
Check Mark

Answer to Problem 7.30QE

The energy of one photon for light is 6.51×1019 J.

Explanation of Solution

Substitute 9.83×1014 Hz for v and 6.626×1034 Js for h in equation (2).

  E=(6.626×1034 Js)(9.83×1014 Hz)(1 s11 Hz)=6.51×1019 J

(c)

Interpretation Introduction

Interpretation:

The energy of one mole photon in kJ for light of frequency 9.83×1014 Hz has to be determined.

Concept Introduction:

Refer to part (a).

(c)

Expert Solution
Check Mark

Answer to Problem 7.30QE

The energy of one mole photon for light is 3.92×102 kJ.

Explanation of Solution

Substitute 9.83×1014 Hz for v and 6.626×1034 Js for h in equation (2).

  E=(6.626×1034 Js)(9.83×1014 Hz)(1 s11 Hz)=6.51×1019 J

The energy per phone is 6.51×1019 J/photon.

The expression to calculate the energy of 1 mole photon is as follows:

  E(J/mol)=E(J/photon)×NA        (4)

Here, NA is the Avogadro number and its value is 6.022×1023 mol1.

Substitute 6.51×1019 J/photon for E(J/photon) and 6.022×1023 mol1 for NA in equation (4)

  E(J/mol)=(6.51×1019 J/photon)(6.022×1023 mol1)=(3.92×105 J/mol)(1 kJ103 J)=3.92×102 kJ/mol

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Identify and provide an explanation of the differences between homogeneous and heterogeneous sampling in the context of sampling methods.
Г C-RSA CHROMATOPAC CH=1 DATA 1: @CHRM1.C00 ATTEN=10 SPEED= 10.0 0.0 b.092 0.797 1.088 1.813 C-RSA CHROMATOPAC CH=1 Report No. =13 ** CALCULATION REPORT ** DATA=1: @CHRM1.000 11/03/05 08:09:52 CH PKNO TIME 1 2 0.797 3 1.088 4 1.813 AREA 1508566 4625442 2180060 HEIGHT 207739 701206 V 287554 V MK IDNO CONC NAME 18.1447 55.6339 26.2213 TOTAL 8314067 1196500 100 C-R8A CHROMATOPAC CH=1 DATA 1: @CHRM1.C00 ATTEN=10 SPEED= 10.0 0. 0 087 337. 0.841 1.150 C-R8A CHROMATOPAC CH=1 Report No. =14 DATA=1: @CHRM1.000 11/03/05 08:12:40 ** CALCULATION REPORT ** CH PKNO TIME AREA 1 3 0.841 1099933 41.15 4039778 HEIGHT MK IDNO 170372 649997¯¯¯ CONC NAME 21.4007 78.5993 TOTAL 5139711 820369 100 3 C-R8A CHROMATOPAC CH=1 DATA 1: @CHRM1.C00 ATTEN=10 SPEED= 10.0 0.100 0:652 5.856 3 1.165 C-RSA CHROMATOPAC CH-1 Report No. =15 DATA=1: @CHRM1.000 11/03/05 08:15:26 ** CALCULATION REPORT ** CH PKNO TIME AREA HEIGHT MK IDNO CONC NAME 1 3 3 0.856 4 1.165 TOTAL 1253386 4838738 175481 708024 V 20.5739 79.4261 6092124…
Draw the product of the reaction shown below. Ignore small byproducts that would evaporate please.

Chapter 7 Solutions

Chemistry Principles And Practice

Ch. 7 - Prob. 7.11QECh. 7 - Prob. 7.12QECh. 7 - Why is the Heisenberg uncertainty principle an...Ch. 7 - Prob. 7.14QECh. 7 - Prob. 7.15QECh. 7 - Prob. 7.16QECh. 7 - Prob. 7.17QECh. 7 - Prob. 7.18QECh. 7 - Prob. 7.19QECh. 7 - Prob. 7.20QECh. 7 - Prob. 7.21QECh. 7 - Prob. 7.22QECh. 7 - An AM radio station broadcasts at a frequency of...Ch. 7 - An FM radio station broadcasts at a frequency of...Ch. 7 - Prob. 7.25QECh. 7 - Prob. 7.26QECh. 7 - Prob. 7.27QECh. 7 - Prob. 7.28QECh. 7 - This laser emits green light with a wavelength of...Ch. 7 - Prob. 7.30QECh. 7 - What is the energy (in kJ) of 1 mol of photons...Ch. 7 - Prob. 7.32QECh. 7 - Prob. 7.33QECh. 7 - Prob. 7.34QECh. 7 - Prob. 7.35QECh. 7 - Prob. 7.36QECh. 7 - Prob. 7.37QECh. 7 - Prob. 7.38QECh. 7 - Prob. 7.39QECh. 7 - Prob. 7.40QECh. 7 - Prob. 7.41QECh. 7 - Prob. 7.42QECh. 7 - Prob. 7.43QECh. 7 - Prob. 7.44QECh. 7 - Prob. 7.45QECh. 7 - Prob. 7.46QECh. 7 - Prob. 7.47QECh. 7 - Prob. 7.48QECh. 7 - Prob. 7.49QECh. 7 - Prob. 7.50QECh. 7 - Prob. 7.51QECh. 7 - Prob. 7.52QECh. 7 - Prob. 7.53QECh. 7 - Prob. 7.54QECh. 7 - (a) How many subshells are present in the n = 4...Ch. 7 - Prob. 7.56QECh. 7 - Prob. 7.57QECh. 7 - Prob. 7.58QECh. 7 - In what region of space is the probability of...Ch. 7 - Prob. 7.60QECh. 7 - Prob. 7.61QECh. 7 - Prob. 7.62QECh. 7 - Sketch an orbital contour that is expected for an...Ch. 7 - Prob. 7.64QECh. 7 - Prob. 7.65QECh. 7 - Prob. 7.66QECh. 7 - Prob. 7.67QECh. 7 - Prob. 7.68QECh. 7 - Prob. 7.69QECh. 7 - Prob. 7.70QECh. 7 - Prob. 7.71QECh. 7 - Prob. 7.72QECh. 7 - Prob. 7.73QECh. 7 - Prob. 7.74QECh. 7 - Prob. 7.75QECh. 7 - Prob. 7.76QECh. 7 - Prob. 7.77QECh. 7 - Prob. 7.78QECh. 7 - Prob. 7.79QECh. 7 - What are the four quantum numbers of the highest...Ch. 7 - Prob. 7.81QECh. 7 - Prob. 7.82QECh. 7 - Prob. 7.83QECh. 7 - Prob. 7.84QECh. 7 - Prob. 7.85QECh. 7 - Prob. 7.86QECh. 7 - Prob. 7.87QECh. 7 - Prob. 7.88QECh. 7 - Prob. 7.89QECh. 7 - Prob. 7.90QECh. 7 - Prob. 7.91QECh. 7 - Prob. 7.92QECh. 7 - Prob. 7.93QECh. 7 - Prob. 7.94QECh. 7 - Prob. 7.95QECh. 7 - Prob. 7.96QECh. 7 - Prob. 7.97QECh. 7 - Use the aufbau procedure to obtain the electron...Ch. 7 - Prob. 7.99QECh. 7 - Prob. 7.100QECh. 7 - Prob. 7.101QECh. 7 - Prob. 7.102QECh. 7 - Prob. 7.103QECh. 7 - A baseball weighs 142 g. A professional pitcher...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Quantum Mechanics - Part 1: Crash Course Physics #43; Author: CrashCourse;https://www.youtube.com/watch?v=7kb1VT0J3DE;License: Standard YouTube License, CC-BY