Concept explainers
Light Energy, and the Hydrogen Atom
- a Which has the greater wavelength, blue light or red light?
- b How do the
frequencies of blue light and red light compare? - c How does the energy of blue light compare with that of red light?
- d Does blue light have a greater
speed than red light ?- e How does the energy of three photons from a blue light source compare with the energy of one photon of blue light from the same source? How does the energy of two photons corresponding to a wavelength of 451 nm (blue light) compare with the energy of three photons corresponding to a wavelength of 704 nm (red light)?
- f A hydrogen atom with an electron in its ground state interacts with a photon of light with a wavelength of 1.22 × 10−6 m. Could the electron make a transition from the ground state to a higher energy level? If it does make a transition, indicate which one. If no transition can occur, explain.
- g If you have one mole of hydrogen atoms with their electrons in the n = 1 level, what is the minimum number of photons you would need to interact with these atoms in order to have all of their electrons promoted to the n = 3 level? What
wavelength of light would you need to perform this experiment?
(a)
Interpretation:
The light with higher wavelength has to be identified from the given lights.
Concept introduction:
Relation between frequency and wavelength is,
C is the speed of light.
h is Planck’s constant (
E is energy of light particle.
Wavelength and frequency are inversely proportional to each other.
The distance between any two similar points of a wave is called wavelength
Figure 1
Frequency is defined as number of wavelengths of a wave that can pass through a point in one second.
Answer to Problem 7.23QP
Red light has larger wavelength than blue light.
Explanation of Solution
To identify: The light with higher wavelength.
Wavelength and frequency are inversely proportional to each other. Frequency of blue light is higher than red light. Thus, red light has larger wavelength than blue light.
By using the relation between wavelength and frequency, the light with higher wavelength was identified.
(b)
Interpretation:
The light with higher frequency has to be identified from the given lights.
Concept introduction:
Relation between frequency and wavelength is,
C is the speed of light.
h is Planck’s constant (
E is energy of light particle.
Wavelength and frequency are inversely proportional to each other.
The distance between any two similar points of a wave is called wavelength
Figure 1
Frequency is defined as number of wavelengths of a wave that can pass through a point in one second.
Answer to Problem 7.23QP
Blue light has larger frequency than red light.
Explanation of Solution
To identify: The light with higher frequency.
Wavelength and frequency are inversely proportional to each other. Wavelength of blue light is less than red light. Thus, blue light has larger frequency than red light.
By using the relation between wavelength and frequency, the light with higher frequency was identified.
(c)
Interpretation:
The energies of blue light and red light has to be related.
Concept introduction:
Relation between frequency and wavelength is,
C is the speed of light.
h is Planck’s constant (
E is energy of light particle.
Wavelength and frequency are inversely proportional to each other.
The distance between any two similar points of a wave is called wavelength
Figure 1
Frequency is defined as number of wavelengths of a wave that can pass through a point in one second.
Answer to Problem 7.23QP
Blue light has higher energy than red light.
Explanation of Solution
To compare: The energy of blue light and red light.
Energy and frequency are directly proportional to each other. Frequency of blue light is higher than red light. Thus, blue light has higher energy than red light.
By using the relation between wavelength and frequency, the energy of blue light and red light was related.
(d)
Interpretation:
The speed of blue light and red light has to be compared.
Concept introduction:
Relation between frequency and wavelength is,
C is the speed of light.
h is Planck’s constant (
E is energy of light particle.
Wavelength and frequency are inversely proportional to each other.
The distance between any two similar points of a wave is called wavelength
Figure 1
Frequency is defined as number of wavelengths of a wave that can pass through a point in one second.
Answer to Problem 7.23QP
Blue light has higher energy than red light.
Explanation of Solution
To compare: The speed of blue light and red light.
Energy and frequency are directly proportional to each other. Frequency of blue light is higher than red light. Thus, blue light has higher energy than red light.
By using the relation between wavelength and frequency, the energy of blue light and red light was related.
(e)
Interpretation:
The energy of one photon and energy of three photons of blue light has to be compared.
Concept introduction:
Relation between frequency and wavelength is,
C is the speed of light.
h is Planck’s constant (
E is energy of light particle.
Wavelength and frequency are inversely proportional to each other.
The distance between any two similar points of a wave is called wavelength
Figure 1
Frequency is defined as number of wavelengths of a wave that can pass through a point in one second.
Answer to Problem 7.23QP
Blue light (
Explanation of Solution
To compare: The energy of one photon and energy of three photons of blue light.
Blue light with energy of three photons is thrice the energy of one photon. In order to relate the energy of two photon (blue light) with energy of three photon (red light), the energy is given as
Blue light (
By using the relation between wavelength and frequency, the energy of two photon of blue light and energy of three photons of red light was related.
(f)
Interpretation:
The possibility of transition of an electron of hydrogen atom from ground state to higher energy state has to be determined.
Concept introduction:
Relation between frequency and wavelength is,
C is the speed of light.
h is Planck’s constant (
E is energy of light particle.
Wavelength and frequency are inversely proportional to each other.
The distance between any two similar points of a wave is called wavelength
Figure 1
Frequency is defined as number of wavelengths of a wave that can pass through a point in one second.
Bohr developed a rule for quantization of energy that could be applicable to the electron of an atom in motion. By using this he derived a formula for energy levels of electron in H-atom.
Answer to Problem 7.23QP
The obtained energy for transition is greater than the energy of light. Therefore, no transition occurs.
Explanation of Solution
To determine: The possibility of transition of an electron of hydrogen atom from ground state to higher energy state.
By using the below formula and calculate frequency and energy of light
The minimum energy required for the transition of
The obtained energy for transition is greater than the energy of light. Therefore, no transition occurs.
The possibility of transition of an electron of hydrogen atom from ground state to higher energy state was determined.
(g)
Interpretation:
The energy required for transition of an electron of hydrogen atom from
Concept introduction:
Relation between frequency and wavelength is,
C is the speed of light.
h is Planck’s constant (
E is energy of light particle.
Wavelength and frequency are inversely proportional to each other.
The distance between any two similar points of a wave is called wavelength
Figure 1
Frequency is defined as number of wavelengths of a wave that can pass through a point in one second.
Bohr developed a rule for quantization of energy that could be applicable to the electron of an atom in motion. By using this he derived a formula for energy levels of electron in H-atom.
Answer to Problem 7.23QP
The minimum energy required for the transition of
The wavelength of the light is
Explanation of Solution
To determine: The energy required for transition of an electron of hydrogen atom from
The minimum energy required for the transition of
The energy required for transition of an electron of hydrogen atom from
Want to see more full solutions like this?
Chapter 7 Solutions
OWLv2 with Student Solutions Manual eBook for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 4 terms (24 months)
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward
- . 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Q2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward
- 10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forwardDo the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forwardNGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning