(Knight's Tour) One of the more interesting puzzlers for chess buffs is the Knight's Tour
problem. The question is this: Can the chess piece called the knight move around an empty chess-
board and touch each of the 64 squares once and only once? We study this intriguing problem in
depth in this exercise.
The knight makes L-shaped moves (over two in one direction then over one in a perpendicular
direction). Thus, from a square in the middle of an empty chessboard. the knight can make
eight different moves (numbered 0 through 7) as shown in Fig. 7.25.
- Draw an 8-by-8 chessboard on a sheet of paper and attempt a Knight's Tour by hand' Put a 1 in the first square you move to. a 2 in the second square, A 3 in the third,
- Now let's develop a
program that will move the knight around a chessboard. The board Is represented by an 8-by-8 two-dimensional array board. Each of the squares is initialized
Before starting the tour, estimate how far you think you'll get, remembering that a full
tour consists of 64 moves. How Ear did you get? Was this close to your estimate?
zero. We describe each of the eight possible moves in terms of both their horizontal
and vertical components. For example, a move of type 0. as shown in Fig, 7.25,
consists of moving two squares horizontally to the right and one square vertically up-
ward. Move 2 consists of moving one square horizontally to the left and squares
0 1 2 3 4 5 6 7 0 1 2 1 2 3 0 3 K 4 4 7 5 5 6 6 7
Fig.7.25 The eight possible moves of the knight
Vertically upward. Horizontal moves to the left and vertical moves upward are indicated with negative numbers. The eight moves may be described by two one-dimensional arrays, horizontal and vertical, as follows:
Horizontal [0] =2 vertical [0] = 1 Horizontal [1] = 1 vertical [1] = 2 Horizontal [2] =-1 vertical [2] = -2 Horizontal [3] = -2 vertical [3] = -1 Horizontal [4] = -2 vertical [4] = 1 Horizontal [5] = -1 vertical [5] = 2 Horizontal [6] = 1 vertical [6] = 2 Horizontal [7]= 2 vertical [7] = 1
Let the variables and currentCoIumn indicate the row and column of
the knight's current position. To make a move of type moveNumber, where is moveNumber is
between 0 and 7. your program uses the statements
CurrentRow += vertical [moveNumber];
currentColumn += horizontal [moveNumber];
Keep a counter that varies I to 64. Record latest in each square the knight moves to. Remember to test cach potential move to see if the knight has already visited that square, and of course, test every potential move to make sure that the knight does not land off the chessboard. Now "Tite a program to move the knight around the chessboard. Run the program. How many moves did the knight make?
c) After attempting to write and run a Knight's Tour program. you've probablv developed some value Insights. We'll use these develop a heuristic (or strategy) for moving the knight. Heuristics do not guarantee success, but a carefully developed heuristic greatly improves the chance of success. You may have observed that the outer squares are more troublesome than the squares nearer the center of the board. In fact, the most troublesome, or inaccessible, squares arc the four corners.
Intuition may suggest that you should attempt to move the knight to the most troublesome squares first and leave open those that easiest to get to, so when the board gets congested near the end of the tour. there will be a greater chance of success.
We may may develop an "accessibility heuristic" by classifying each square according to how accessible it's then always moving the knight to the square (within the knight's L shaped moves, of course) that's least accessible. We label a two-dimensional array accessibility with numbers indicating from how many squares each particular square is accessible. On a blank chessboard, each center square is rated as 8, each corner square is rated as 2 and the other squares have accessibility numbers of 3,4 or 6 as follows
-
2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2
Now write a version of the Knight's Tour program using the accessibility heuristic.
At any time, the knight should move to the square with the lowest accessibility num ber. In case of a tie, the knight may move to any of the tied squares. Therefore, the tour may begin in any of the four corners. [Note: As the knight moves around the chess- board, your program should reduce the accessibility numbers as more and more Squares become occupied. In this way, at any given time during the tour, each available square's accessibility number will remain equal to precisely the number of squares from which that square may be reached.] Run this version of your program. Did you get a full tour? Now modify the program to run 64 tours, one starting from each square of the chessboard. How many full tours did you get?
d.Write a version of the Knight's Tour program Which, When encountering a tie between two or more Squares, decides what square to choose by looking ahead to those squares reachable from the "tied" squares. Your program should move to the square for which the next move would arrive at a square with the lowest accessibility number.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
C++ How to Program (10th Edition)
- 1. Complete the routing table for R2 as per the table shown below when implementing RIP routing Protocol? (14 marks) 195.2.4.0 130.10.0.0 195.2.4.1 m1 130.10.0.2 mo R2 R3 130.10.0.1 195.2.5.1 195.2.5.0 195.2.5.2 195.2.6.1 195.2.6.0 m2 130.11.0.0 130.11.0.2 205.5.5.0 205.5.5.1 R4 130.11.0.1 205.5.6.1 205.5.6.0arrow_forwardAnalyze the charts and introduce each charts by describing each. Identify the patterns in the given data. And determine how are the data points are related. Refer to the raw data (table):arrow_forward3A) Generate a hash table for the following values: 11, 9, 6, 28, 19, 46, 34, 14. Assume the table size is 9 and the primary hash function is h(k) = k % 9. i) Hash table using quadratic probing ii) Hash table with a secondary hash function of h2(k) = 7- (k%7) 3B) Demonstrate with a suitable example, any three possible ways to remove the keys and yet maintaining the properties of a B-Tree. 3C) Differentiate between Greedy and Dynamic Programming.arrow_forward
- What are the charts (with their title name) that could be use to illustrate the data? Please give picture examples.arrow_forwardA design for a synchronous divide-by-six Gray counter isrequired which meets the following specification.The system has 2 inputs, PAUSE and SKIP:• While PAUSE and SKIP are not asserted (logic 0), thecounter continually loops through the Gray coded binarysequence {0002, 0012, 0112, 0102, 1102, 1112}.• If PAUSE is asserted (logic 1) when the counter is onnumber 0102, it stays here until it becomes unasserted (atwhich point it continues counting as before).• While SKIP is asserted (logic 1), the counter misses outodd numbers, i.e. it loops through the sequence {0002,0112, 1102}.The system has 4 outputs, BIT3, BIT2, BIT1, and WAITING:• BIT3, BIT2, and BIT1 are unconditional outputsrepresenting the current number, where BIT3 is the mostsignificant-bit and BIT1 is the least-significant-bit.• An active-high conditional output WAITING should beasserted (logic 1) whenever the counter is paused at 0102.(a) Draw an ASM chart for a synchronous system to providethe functionality described above.(b)…arrow_forwardS A B D FL I C J E G H T K L Figure 1: Search tree 1. Uninformed search algorithms (6 points) Based on the search tree in Figure 1, provide the trace to find a path from the start node S to a goal node T for the following three uninformed search algorithms. When a node has multiple successors, use the left-to-right convention. a. Depth first search (2 points) b. Breadth first search (2 points) c. Iterative deepening search (2 points)arrow_forward
- We want to get an idea of how many tickets we have and what our issues are. Print the ticket ID number, ticket description, ticket priority, ticket status, and, if the information is available, employee first name assigned to it for our records. Include all tickets regardless of whether they have been assigned to an employee or not. Sort it alphabetically by ticket status, and then numerically by ticket ID, with the lower ticket IDs on top.arrow_forwardFigure 1 shows an ASM chart representing the operation of a controller. Stateassignments for each state are indicated in square brackets for [Q1, Q0].Using the ASM design technique:(a) Produce a State Transition Table from the ASM Chart in Figure 1.(b) Extract minimised Boolean expressions from your state transition tablefor Q1, Q0, DISPATCH and REJECT. Show all your working.(c) Implement your design using AND/OR/NOT logic gates and risingedgetriggered D-type Flip Flops. Your answer should include a circuitschematic.arrow_forwardA controller is required for a home security alarm, providing the followingfunctionality. The alarm does nothing while it is disarmed (‘switched off’). It canbe armed (‘switched on’) by entering a PIN on the keypad. Whenever thealarm is armed, it can be disarmed by entering the PIN on the keypad.If motion is detected while the alarm is armed, the siren should sound AND asingle SMS message sent to the police to notify them. Further motion shouldnot result in more messages being sent. If the siren is sounding, it can only bedisarmed by entering the PIN on the keypad. Once the alarm is disarmed, asingle SMS should be sent to the police to notify them.Two (active-high) input signals are provided to the controller:MOTION: Asserted while motion is detected inside the home.PIN: Asserted for a single clock cycle whenever the PIN has beencorrectly entered on the keypad.The controller must provide two (active-high) outputs:SIREN: The siren sounds while this output is asserted.POLICE: One SMS…arrow_forward
- 4G+ Vo) % 1.1. LTE1 : Q B NIS شوز طبي ۱:۱۷ کا A X حاز هذا على إعجاب Mohamed Bashar. MEDICAL SHOE شوز طبي ممول . اقوى عرض بالعراق بلاش سعر القطعة ١٥ الف سعر القطعتين ٢٥ الف سعر 3 قطع ٣٥ الف القياسات : 40-41-42-43-44- افحص وكدر ثم ادفع خدمة التوصيل 5 الف لكافة محافظات العراق ופרסם BNI SH ופרסם DON JU WORLD DON JU MORISO DON JU إرسال رسالة III Messenger التواصل مع شوز طبي تعليق باسم اواب حمیدarrow_forwardA manipulator is identified by the following table of parameters and variables:a. Obtain the transformation matrices between adjacent coordinate frames and calculate the global transformation matrix.arrow_forwardWhich tool takes the 2 provided input datasets and produces the following output dataset? Input 1: Record First Last Output: 1 Enzo Cordova Record 2 Maggie Freelund Input 2: Record Frist Last MI ? First 1 Enzo Last MI Cordova [Null] 2 Maggie Freelund [Null] 3 Jason Wayans T. 4 Ruby Landry [Null] 1 Jason Wayans T. 5 Devonn Unger [Null] 2 Ruby Landry [Null] 6 Bradley Freelund [Null] 3 Devonn Unger [Null] 4 Bradley Freelund [Null] OA. Append Fields O B. Union OC. Join OD. Find Replace Clear selectionarrow_forward
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningOperations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks Cole
- Programming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageNew Perspectives on HTML5, CSS3, and JavaScriptComputer ScienceISBN:9781305503922Author:Patrick M. CareyPublisher:Cengage LearningMicrosoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,