CHEMICAL PRINCIPLES PKG W/SAPLING
7th Edition
ISBN: 9781319086411
Author: ATKINS
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7.20E
(a)
Interpretation Introduction
Interpretation:
The expression for the concentration of pollutant at equilibrium has to be determined.
Concept Introduction:
According to the integrated rate law for the first order reaction, the concentration of reactant is the exponential function of time. The half-life of the particular
(b)
Interpretation Introduction
Interpretation:
The expression for the half-life of the pollutant speciehas to be determined.
Concept Introduction:
Same as part (a).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The equilibrium constant for the binding of a drug molecule to a protein was measured as 200. In a separate experiment, the rate constant for the binding process, which is second order overall, was found to be 1.5 × 108 dm3 mol–1 s–1. What is the rate constant for the first-order dissociation of the drug molecule from the protein–drug complex?
(a) Explain the meaning of the sentence:“The velocity laws of reactions are empirical” (b) It can be determined that the velocity law of a generic reaction A +B→Pév = k[A]x[B]y. Plot on a graph the variation of [A] and [P] with time, and explain why v= d[P]/dt = -d[A]/dt. (c) Explain the meaning of the terms k, x and y, in the velocity law, presented in item b: (d) Explain what it means in practice for a velocity law to be of zero order. Plot ,A as a function of t, for the zero-order reaction A→Products. (e) Explain what elementary reactions are and how they can be classified.
The rate constant of the reaction H2O2(aq) + I−(aq) + H+(aq) → H2O(l) + HIO(aq) is sensitive to the ionic strength of the aqueous solution in which the reaction occurs. At 25 °C, kr = 12.2 dm6 mol−2 min−1 at an ionic strength of 0.0525. Use the Debye–Hückel limiting law to estimate the rate constant at zero ionic strength.
Chapter 7 Solutions
CHEMICAL PRINCIPLES PKG W/SAPLING
Ch. 7 - Prob. 7A.1ASTCh. 7 - Prob. 7A.1BSTCh. 7 - Prob. 7A.2ASTCh. 7 - Prob. 7A.2BSTCh. 7 - Prob. 7A.3ASTCh. 7 - Prob. 7A.3BSTCh. 7 - Prob. 7A.4ASTCh. 7 - Prob. 7A.4BSTCh. 7 - Prob. 7A.1ECh. 7 - Prob. 7A.2E
Ch. 7 - Prob. 7A.3ECh. 7 - Prob. 7A.4ECh. 7 - Prob. 7A.7ECh. 7 - Prob. 7A.8ECh. 7 - Prob. 7A.9ECh. 7 - Prob. 7A.10ECh. 7 - Prob. 7A.11ECh. 7 - Prob. 7A.12ECh. 7 - Prob. 7A.13ECh. 7 - Prob. 7A.14ECh. 7 - Prob. 7A.15ECh. 7 - Prob. 7A.16ECh. 7 - Prob. 7A.17ECh. 7 - Prob. 7A.18ECh. 7 - Prob. 7B.1ASTCh. 7 - Prob. 7B.1BSTCh. 7 - Prob. 7B.2ASTCh. 7 - Prob. 7B.2BSTCh. 7 - Prob. 7B.3ASTCh. 7 - Prob. 7B.3BSTCh. 7 - Prob. 7B.4ASTCh. 7 - Prob. 7B.4BSTCh. 7 - Prob. 7B.5ASTCh. 7 - Prob. 7B.5BSTCh. 7 - Prob. 7B.1ECh. 7 - Prob. 7B.2ECh. 7 - Prob. 7B.3ECh. 7 - Prob. 7B.4ECh. 7 - Prob. 7B.5ECh. 7 - Prob. 7B.6ECh. 7 - Prob. 7B.7ECh. 7 - Prob. 7B.8ECh. 7 - Prob. 7B.9ECh. 7 - Prob. 7B.10ECh. 7 - Prob. 7B.13ECh. 7 - Prob. 7B.14ECh. 7 - Prob. 7B.15ECh. 7 - Prob. 7B.16ECh. 7 - Prob. 7B.17ECh. 7 - Prob. 7B.18ECh. 7 - Prob. 7B.19ECh. 7 - Prob. 7B.20ECh. 7 - Prob. 7B.21ECh. 7 - Prob. 7B.22ECh. 7 - Prob. 7C.1ASTCh. 7 - Prob. 7C.1BSTCh. 7 - Prob. 7C.2ASTCh. 7 - Prob. 7C.2BSTCh. 7 - Prob. 7C.1ECh. 7 - Prob. 7C.2ECh. 7 - Prob. 7C.3ECh. 7 - Prob. 7C.4ECh. 7 - Prob. 7C.5ECh. 7 - Prob. 7C.6ECh. 7 - Prob. 7C.7ECh. 7 - Prob. 7C.8ECh. 7 - Prob. 7C.9ECh. 7 - Prob. 7C.11ECh. 7 - Prob. 7C.12ECh. 7 - Prob. 7D.1ASTCh. 7 - Prob. 7D.1BSTCh. 7 - Prob. 7D.2ASTCh. 7 - Prob. 7D.2BSTCh. 7 - Prob. 7D.1ECh. 7 - Prob. 7D.2ECh. 7 - Prob. 7D.3ECh. 7 - Prob. 7D.5ECh. 7 - Prob. 7D.6ECh. 7 - Prob. 7D.7ECh. 7 - Prob. 7D.8ECh. 7 - Prob. 7E.1ASTCh. 7 - Prob. 7E.1BSTCh. 7 - Prob. 7E.1ECh. 7 - Prob. 7E.2ECh. 7 - Prob. 7E.3ECh. 7 - Prob. 7E.4ECh. 7 - Prob. 7E.5ECh. 7 - Prob. 7E.6ECh. 7 - Prob. 7E.7ECh. 7 - Prob. 7E.8ECh. 7 - Prob. 7E.9ECh. 7 - Prob. 1OCECh. 7 - Prob. 7.1ECh. 7 - Prob. 7.2ECh. 7 - Prob. 7.3ECh. 7 - Prob. 7.4ECh. 7 - Prob. 7.5ECh. 7 - Prob. 7.6ECh. 7 - Prob. 7.7ECh. 7 - Prob. 7.9ECh. 7 - Prob. 7.11ECh. 7 - Prob. 7.14ECh. 7 - Prob. 7.15ECh. 7 - Prob. 7.17ECh. 7 - Prob. 7.19ECh. 7 - Prob. 7.20ECh. 7 - Prob. 7.23ECh. 7 - Prob. 7.25ECh. 7 - Prob. 7.26ECh. 7 - Prob. 7.29ECh. 7 - Prob. 7.30ECh. 7 - Prob. 7.31E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Define stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forwardList at least four experimentally determined parameters that you, an experimenter, can define when exploring the hydrolysis of ethyl benzoate by aqueous sodium hydroxide.arrow_forwardWhat is the difference between the integrated and differential forms of the rate law?arrow_forward
- Explain how a species might be part of a rate law but not part of a balanced chemical reaction.arrow_forwardMany biochemical reactions are catalyzed by acids. A typical mechanism consistent with the experimental results (in which HA is the acid and X is the reactant) is Step 1: Step 2: Step 3: Derive the rate law from this mechanism. Determine the order of reaction with respect to HA. Determine how doubling the concentration of HA would affect the rate of the reaction.arrow_forwardWhat are the rate laws of mechanisms 1 and 2 for oscillating reactions if the second reactions were the rate-determining steps?arrow_forward
- The degradation of the antibiotic clindamycin stored at 343 K in aqueous solution at pH 4 is found to be first order with a rate constant of 2.49 x 10−7 s −1. Over the temperature range 320 K to 360 K theactivation energy was found to be 123.3 kJ mol−1. (a) Calculate the rate constant at 325 K.(b) The threshold for product safety is 1% degradation. At 295 K the time taken for 1% of the antibiotic to degrade is found to be close to 0.01/ k. Comment on the shelf-life of the drug.arrow_forwardThe rate of change of molar concentration of CH3 radicals in the reaction 2 CH3(g) → CH3CH3(g) was reported as d[CH3]/dt = −1.2 mol dm−3 s−1 under particular conditions. What is the rate of formation of CH3CH3?arrow_forwardIn the hydrogenation of ethylene using a nickel catalyst, the initial concentration of ethylene is 1.70 mol⋅L^−1 and its rate constant (k) is 0.0010 mol⋅L^−1⋅s^−1 . Determine the rate of reaction if it follows a zero-order reaction mechanism.arrow_forward
- Obtain the 2"-1 – 1 | T (п - 1)k. а"-1 relation between the order of the reaction (n), the reaction rate constant (k), the initial concentration (a), and the half-life (T).arrow_forwardThe formation of dinitrogen pentoxide is described by the following chemical equation: 2NO, (g) + O; (g) → 0, (g) + N,O5 (g) Suppose a two-step mechanism is proposed for this reaction, beginning with this elementary reaction: NO2 (g) + 03 (g) NO; (g) + 0, Suppose also that the second step of the mechanism should be bimolecular. Suggest a reasonable second step. That is, write the balanced chemical equation of a bimolecular elementary reaction that would complete the proposed mechanism.arrow_forwardA second-order-reaction of the type A +2 B→ P was carried out in a solution that was initially 0.075 mol dm3 in A and 0.030 mol dm3 in B. After 1.0 h the concentration of A had fallen to 0.045 mol dm3. (a) Calculate the rate constant. (b) What is the half-life of the reactants? The rate constant for the decomposition of a certain substance is 1.70 x 10-2 dm³ mol-¹ s¹ at 24°C and 2.01 x 10-2 dm³ mol-¹ s¹ at 37°C. Evaluate the Arrhenius parameters of the reaction. A reaction 2 AP has a third-order rate law with k = 3.50 x 104 dmº mol2 s¹. Calculate the time required for the concentration of A to change from 0.077 mol dm3 to 0.021 mol dm³.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY