(a)
Interpretation:
The order with respect to each reactant and the overall order of the reaction have to be determined.
Concept Introduction:
The rate of the reaction is referred to the change in the molar concentration in the distinct interval of time. According to the rate law, the rate of the reaction is directly proportional to the initial concentration of the reactant of the reaction.
(b)
Interpretation:
The expression for the rate law for the given reaction has to be determined.
Concept Introduction:
Same as part (a).
(c)
Interpretation:
The rate constant for the given reaction has to be determined.
Concept Introduction:
Same as part (a).
(d)
Interpretation:
The
Concept Introduction:
Same as part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
CHEMICAL PRINCIPLES PKG W/SAPLING
- One experimental procedure that can be used to determine the rate law of a reaction is the method of initial rates. What data are gathered in the method of initial rates, and how are these data manipulated to determine k and the orders of the species in the rate law? Are the units for k. the rate constant, the same for all rate laws? Explain. If a reaction is first order in A, what happens to the rate if [A] is tripled? If the initial rate for a reaction increases by a factor of 16 when [A] is quadrupled, what is the order of n? If a reaction is third order in A and [A] is doubled, what happens to the initial rate? If a reaction is zero order, what effect does [A] have on the initial rate of a reaction?arrow_forwardAt 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forward
- When boron trifluoride reacts with ammonia, the following reaction occurs: BF3(g)+NH3(g)BF3NH3(g)The following data are obtained at a particular temperature: (a) What is the order of the reaction with respect to BF3, NH3, and overall? (b) Write the rate expression for the reaction. (c) Calculate k for the reaction. (d) When [ BF3 ]=0.533M and NH3=0.300M, what is the rate of the reaction at the temperature of the experiment?arrow_forwardFor the reaction of phenyl acetate with water the concentration as a function of time was given in Question 11. Assume that the concentration of water does not change during the reaction. Analyze the data from Question 11 to determine (a) the rate law. (b) the order of the reaction with respect to phenyl acetate. (c) the rate constant. (d) the rate of reaction when the concentration of phenyl acetate is 0.10 mol/L (assuming that the concentration of water is the same as in the experiments in the table in Question 11).arrow_forwardThe hydrolysis of the sugar sucrose to the sugars glucose and fructose, C12H22O11+H2OC6H12O6+C6H12O6 follows a first-order rate equation for the disappearance of sucrose: Rate =k[C12H22O11] (The products of the reaction, glucose and fructose, have the same molecular formulas but differ in the arrangement of the atoms in their molecules.) (a) In neutral solution, k=2.11011s1 at 27 C and 8.51011s1 at 37 C. Determine the activation energy, the frequency factor, and the rate constant for this equation at 47 C (assuming the kinetics remain consistent with the Arrhenius equation at this temperature). (b) When a solution of sucrose with an initial concentration of 0.150 M reaches equilibrium, the concentration of sucrose is 1.65107M . How long will it take the solution to reach equilibrium at 27 C in the absence of a catalyst? Because the concentration of sucrose at equilibrium is so low, assume that the reaction is irreversible. (c) Why does assuming that the reaction is irreversible simplify the calculation in pan (b)?arrow_forward
- At 500 K in the presence of a copper surface, ethanol decomposes according to the equation C2H5OH(g)CH3CHO(g)+H2(g) The pressure of C2H5OH was measured as a function of time and the following data were obtained: Time(s) PC2H5OH(torr) 0 250. 100. 237 200. 224 300. 211 400. 198 500. 185 Since the pressure of a gas is directly proportional to the concentration of gas, we can express the rate law for a gaseous reaction in terms of partial pressures. Using the above data, deduce the rate law, the integrated rate law, and the value of the rate constant, all in terms of pressure units in atm and time in seconds. Predict the pressure of C2H5OH after 900. s from the start of the reaction. (Hint: To determine the order of the reaction with respect to C2H5OH, compare how the pressure of C2H5OH decreases with each time listing.)arrow_forwardThe label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forwardConsider the following reaction:2 NO(g) + 2 H2(g)--->N2(g) + 2 H2O(g)(a) The rate law for this reaction is first order in H2 andsecond order in NO. Write the rate law. (b) If the rateconstant for this reaction at 1000 K is 6.0 x 104 M-2 s-1,what is the reaction rate when [NO] = 0.035 M and[H2] = 0.015 M? (c) What is the reaction rate at 1000 Kwhen the concentration of NO is increased to 0.10 M,while the concentration of H2 is 0.010 M? (d) What is thereaction rate at 1000 K if [NO] is decreased to 0.010 M and[H2] is increased to 0.030 M?arrow_forward
- The following data was obtained from the reaction: (a) Determine the rate law. (b) Calculate the rate constant. (c) Calculate the initial rate, if [NO2~] = 0.1 M and [NH4+] = 0.1 Marrow_forwardConsider the following reaction: 4 HBr(g) + O2(g) 2 H2O(g) + 2 Br2(g)(a) The rate law for this reaction is first order in HBr(g) and first order in O2(g). What is the rate law for this reaction?(b) If the rate constant for this reaction at a certain temperature is 8.80e+03, what is the reaction rate when [HBr(g)] = 0.00429 M and [O2(g)] = 0.00758 M?Rate = _______ M/s.(c) What is the reaction rate when the concentration of HBr(g) is doubled, to 0.00858 M while the concentration of O2(g) is 0.00758 M?Rate = _______ M/sarrow_forward(a) For a reaction A + B —> P, the rate is given by Rate = k[A]2 [B](i) How is the rate of reaction affected if the concentration of A is doubled?(ii) What is the overall order of reaction if B is present in large excess?(b) A first order reaction takes 23.1 minutes for 50% completion. Calculate the time required for 75% completion of this reaction.(Given: log 2 = 0.301, log 3 = 0.4771, log 4 = 0.6021)arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning