(a) Interpretation:
To analyze the partial pressure of O2 in venous blood and to determine the amount of oxygen that is delivered to the tissues.
Introduction:
The oxyhemoglobin dissociation curve represents the proportion of the hemoglobin dissociated with the oxygen or the saturated form.
(b) Interpretation:
To determine the percentage of the oxygen bind in the lungs and delivered to tissues.
Concept Introduction:
The oxyhemoglobin dissociation curve represents the proportion of the hemoglobin dissociated with the oxygen or the saturated form.
(c) Interpretation:
To determine the percentage of the oxygen bind in the lungs and delivered to tissues, as the pH is dropped in capillaries to 6.8 then reaches 7.4 in the lungs.
Concept Introduction:
The oxyhemoglobin dissociation curve represents the proportion of the hemoglobin dissociated with the oxygen or the saturated form.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
BIOCHEMISTRY BOOKS ALC&MOD MST/ET PKG
- The AG of hydrolysis of a sugar phosphate (S-O-P) to the free sugar (S-OH) is -26.6 kJ/mol in a hypothetical cell in which the steady-state concentrations of sugar phosphate, free sugar, and inorganic phosphate are 1.0 mM, 0.20 mM, and 50.0 mM, respectively. S-O-P + H2O S-OH + Pi (a) What is the AG°' for this reaction? (b) In the cell, S-O-P is formed by the transfer of a phosphate group from ATP. What would the AG be for the transfer of the g-phosphate from ATP to this sugar (S-OH)? [AG for ATP hydrolysis is -31 kJ/mol.]arrow_forward1) Consider the reaction: A B + C (a) What is the Keg for this reaction? AG= -8.80 kJ/mol (b) The reverse reaction is initiated by creating a solution containing 20mM B, 1mM A and 150mM C. At the instant these are mixed, what is the free energy change associated with the reaction?arrow_forwardWhat is the chemical importance of the negative charge on the phosphate group? Be asspecific as possible. In what ways might this negative charge have beenthermodynamically useful during the evolution of ATP-binding proteins?arrow_forward
- One prominent theory on life origins was that RNA enzymes came into existence early inthe prebiotic history of Earth and were able to do basic chemical catalyses. Eventually,this “RNA-world” was overtaken by the stability of DNA as an information carrier and thediversity of catalytic functions capable of being performed by polypeptides. Is the RNA world hypothesis is a well-founded model?arrow_forwardThe AG" of hydrolysis (ATP + H2O --> ADP + Pi) is -31.0 kJ/mol. Answer the following questions assuming that the steady-state concentrations in the cell are as indicated below. (Note: Steady-state refers to a non-equilibrium situation that exists due to a balance between reactions that supply and remove these substances.) [ADP] = 0.40 mM, [ATP] = 4.0 mM, and [Pi] = 40.0 mM a) Calculate the equilibrium constant for this reaction. b) What would the AG' for ATP hydrolysis be in the cell? c) Is this reaction at equilibrium in the cell? Briefly explain your answer.arrow_forward5) Theoretically, ATP did not have to become our bodies' main energy currency. Two alternative carriers, acetyl phosphate and S-adenosylmethionine could have been utilized, rather than ATP. AG" for acetyl phosphate hydrolysis is -43.3 kJ/mol and AG" for S- adenosylmethionine hydrolysis is -25.6 kJ/mol. (a) Calculate the weight of each alternative energy carrier that would need to be consumed by humans on a 2000 calorie per day diet if our bodies could not recycle it. Assume a 50% absorption of energy from our diet. (b) If our bodies contain 25g of each alternative energy carrier and they CAN be recycled, how many times would each molecule of each energy carrier need to be recycled? (c) Comment on the special properties of ATP and why it is unlikely that these alternative carriers would be utilized biologically.arrow_forward
- Give three reasons why evolution may have selected for phosphates compared to othersimilar leaving groups such as conjugated carboxylic acids or amides. Explain whatbenefit each of your reasons has granted to the living organism.arrow_forwardThe preferred substrate is T because the enzyme half-saturates at 7.00 mM for T, but requires 28.0 mM for U, and 112 mM for S. b Question Content Area The rate constant k 2 with substrate S is 9.60×107 sec-1, with substrate T, k 2 = 6.00×104 sec-1, and with substrate U, k 2 = 2.40×106 sec-1. Calculate the catalytic efficiency with S, T, and U. Catalytic efficiency with S = Catalytic efficiency with T = Catalytic efficiency with U = Does enzyme A use substrate S, substrate T, or substrate U with greater catalytic efficiency?arrow_forwardFumerase catalyzes the conversion of fumerate to malate. fumerate + H2O ⇋ malate The turnover number, kcat, for fumerase is 8.00×102 sec-1. The Km of this enzyme for fumerate is 5.00×10-3 μmol mL-1. a In an experiment using 2.00×10-3 μmol·mL-1, what is Vmax?arrow_forward
- Suppose you wanted to make a buffer of exactly pH 7.00 using KH2PO4 and Na2HPO4. If the final solution was 0.18 M in KH2PO4, you would need 0.25 M Na2HPO4. Now assume you wish to make a buffer at the same pH, using the same substances, but want the total phosphate molarity ([HPO42−]+[H2PO−4]) to equal 0.20 M. What concentration of the Na2HPO4 would be required?arrow_forwardMatch the three types of neurotransmitters to their relative size (largest to smallest): Largest Peptide neurotransmitter ✓ Second largest [Choose] Smallest > [Choose ] [Choose ] Amino acid neurotransmitter Peptide neurotransmitter Amine neurotransmitterarrow_forwardneed help not sure why its wrong please helparrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON