![General, Organic, and Biological Chemistry - 4th edition](https://www.bartleby.com/isbn_cover_images/9781259883989/9781259883989_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The nitrox gas tank consists higher than normal level of oxygen and lower than normal level nitrogen and this nitrox gas tank is used for the purpose of the scuba diving. The percentage of N2 and O2 gas in the nitrox tank is to be determined.
Concept Introduction:
According to Dalton's law −
Here,
Raoult's law is defined as follows:
Here,
![Check Mark](/static/check-mark.png)
Answer to Problem 58P
The percentage of N2 gas in nitrox tank = 65%
The percentage of O2 gas in nitrox tank = 35%
Explanation of Solution
The mole fraction is defined as the ratio of the mole of individual gas with total number of the moles present in the mixture. This expression can be represented as −
According Dalton's law the total pressure is the sum of the partial pressure of each gas. This can be represented as −
Where,
According to Raoult's law the partial pressure of individual gas is calculated by the multiplication of the total pressure with that of the partial pressure of that gas. in this the partial pressure of individual gas is directly proportional to the mole fraction of that gas.
The percentage of N2 gas in the nitrox gas can be calculated as −
The percentage of O2 gas in the nitrox gas can be calculated as −
(b)
Interpretation:
The partial pressure of each gas in psi in the tank is to be determined.
Concept Introduction:
According to Dalton's law −
Here,
Raoult's law is defined as follows:
Here,
![Check Mark](/static/check-mark.png)
Answer to Problem 58P
The partial pressure of nitrogen gas in nitrox tank = 1120 psi
The partial pressure of oxygen gas in nitrox tank = 2080 psi
Explanation of Solution
The mole fraction of the N2 gas can be calculated as −
Putting the values,
The mole fraction of the O2 gas can be calculated as −
The mole fraction of N2 gas = 0.65
The mole fraction of O2 gas = 0.35
It is given that,
Total pressure = 3200psi
The partial pressure of nitrogen gas can be calculated as −
The partial pressure of oxygen gas can be calculated as −
The partial pressure of nitrogen gas in nitrox tank = 1120 psi
The partial pressure of oxygen gas in nitrox tank = 2080 psi
Want to see more full solutions like this?
Chapter 7 Solutions
General, Organic, and Biological Chemistry - 4th edition
- Nonearrow_forwardTransmitance 3. Which one of the following compounds corresponds to this IR spectrum? Point out the absorption band(s) that helped you decide. OH H3C OH H₂C CH3 H3C CH3 H3C INFRARED SPECTRUM 0.8- 0.6 0.4- 0.2 3000 2000 1000 Wavenumber (cm-1) 4. Consider this compound: H3C On the structure above, label the different types of H's as A, B, C, etc. In table form, list the labeled signals, and for each one state the number of hydrogens, their shifts, and the splitting you would observe for these hydrogens in the ¹H NMR spectrum. Label # of hydrogens splitting Shift (2)arrow_forwardNonearrow_forward
- Draw the Lewis structure of C2H4Oarrow_forwarda) 5. Circle all acidic (and anticoplanar to the Leaving group) protons in the following molecules, Solve these elimination reactions, and identify the major and minor products where appropriate: 20 points + NaOCH3 Br (2 productarrow_forwardNonearrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133109655/9781133109655_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)