
(a)
The spring constant when ball is modelled as a spring.
(a)

Answer to Problem 57AP
The spring constant when ball is modelled as a spring is
Explanation of Solution
As steel ball is modelled as a spring this shows elastic behavior of the ball, so to calculate spring constant Hooke’s law is used.
Write the expression for force applied to the ball.
Here,
Rearrange above equation for
Conclusion:
Substitute
Thus, the spring constant when ball is modelled as a spring is
(b)
The interaction of the ball during the collision.
(b)

Answer to Problem 57AP
The interaction of the ball during the collision is for a nonzero time interval.
Explanation of Solution
The interaction of the ball during the collision is for a time interval because if the interaction of the balls were for instant and not for some time then the force exerted by each ball on the other could be infinite and that is not possible.
Therefore, the interaction is for some time interval.
Conclusion:
Thus, the interaction of the ball during the collision is for a nonzero time interval
(c)
The kinetic energy of each of the balls before they collide .
(c)

Answer to Problem 57AP
The kinetic energy of each of the balls before they collide is
Explanation of Solution
The Kinetic energy for both the balls remains same as they have equal mass and they are moving with the same speed.
Consider iron as the main constituent in the density of steel to calculate mass of the balls.
Write the expression for mass in terms of density.
Here,
Write the expression for volume of sphere.
Here,
Substitute
Write the expression for Kinetic energy.
Here,
Write the expression for radius.
Here,
Substitute
Conclusion:
Substitute
Substitute
Thus, the kinetic energy of each of the balls before they collide is
(d)
The maximum amount of compression each ball undergoes when the balls collide.
(d)

Answer to Problem 57AP
The maximum amount of compression each ball undergoes when the balls collide is
Explanation of Solution
The maximum amount of elastic potential energy each ball has when the balls collide is equal to the kinetic energy they have before collision.
Write the expression for elastic potential energy.
Here,
Write the expression for conservation of energy for this system.
Substitute
Rearrange equation (VI) for
Conclusion:
Substitute
Thus, the maximum amount of compression each ball undergoes when the balls collide is
(e)
The time interval for which the balls are in contact.
(e)

Answer to Problem 57AP
The time interval for which the balls are in contact is nearly
Explanation of Solution
The balls are in contact for a very small time and distance covered by them is the maximum amount of compression the ball undergoes when it collides with the average speed.
Write the expression for average speed of the ball.
Here,
Write the expression for time.
Here,
Conclusion:
Substitute
Substitute
The order of magnitude estimate for time interval is
Thus, the time interval for which the balls are in contact is nearly
Want to see more full solutions like this?
Chapter 7 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- The rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forwardGive a more general expression for the magnitude of the torque τ. Rewrite the answer found in Part A in terms of the magnitude of the magnetic dipole moment of the current loop m. Define the angle between the vector perpendicular to the plane of the coil and the magnetic field to be ϕ, noting that this angle is the complement of angle θ in Part A. Give your answer in terms of the magnetic moment mm, magnetic field B, and ϕ.arrow_forwardCalculate the electric and magnetic energy densities at thesurface of a 3-mm diameter copper wire carrying a 15-A current. The resistivity ofcopper is 1.68×10-8 Ω.m.Prob. 18, page 806, Ans: uE= 5.6 10-15 J/m3 uB= 1.6 J/m3arrow_forward
- A 15.8-mW laser puts out a narrow beam 2.0 mm in diameter.Suppose that the beam is in free space. What is the rms value of E in the beam? What isthe rms value of B in the beam?Prob. 28, page 834. Ans: Erms= 1380 V/m, Brms =4.59×10-6 Tarrow_forwardA 4.5 cm tall object is placed 26 cm in front of a sphericalmirror. It is desired to produce a virtual image that is upright and 3.5 cm tall.(a) What type of mirror should be used, convex, or concave?(b) Where is the image located?(c) What is the focal length of the mirror?(d) What is the radius of curvature of the mirror?Prob. 25, page 861. Ans: (a) convex, (b) di= -20.2 cm, i.e. 20.2 cm behind the mirror,(c) f= -90.55 cm, (d) r= -181.1 cm.arrow_forwardA series RCL circuit contains an inductor with inductance L=3.32 mH, and a generator whose rms voltage is 11.2 V. At a resonant frequencyof 1.25 kHz the average power delivered to the circuit is 26.9 W.(a) Find the value of the capacitance.(b) Find the value of the resistance.(c) What is the power factor of this circuit?Ans: C=4.89 μF, R=4.66 Ω, 1.arrow_forward
- A group of particles is traveling in a magnetic field of unknown magnitude and direction. You observe that a proton moving at 1.70 km/s in the +x-direction experiences a force of 2.06×10−16 N in the +y-direction, and an electron moving at 4.40 km/s in the −z-direction experiences a force of 8.10×10−16 N in the +y-direction. What is the magnitude of the magnetic force on an electron moving in the −y-direction at 3.70 km/s ? What is the direction of this the magnetic force? (in the xz-plane)arrow_forwardA particle with a charge of −5.20 nC is moving in a uniform magnetic field of B =−( 1.22 T )k^. The magnetic force on the particle is measured to be F=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the x component of the velocity of the particle.arrow_forwardIs it possible for average velocity to be negative?a. Yes, in cases when the net displacement is negative.b. Yes, if the body keeps changing its direction during motion.c. No, average velocity describes only magnitude and not the direction of motion.d. No, average velocity describes only the magnitude in the positive direction of motion.arrow_forward
- Tutorial Exercise An air-filled spherical capacitor is constructed with an inner-shell radius of 6.95 cm and an outer-shell radius of 14.5 cm. (a) Calculate the capacitance of the device. (b) What potential difference between the spheres results in a 4.00-μC charge on the capacitor? Part 1 of 4 - Conceptualize Since the separation between the inner and outer shells is much larger than a typical electronic capacitor with separation on the order of 0.1 mm and capacitance in the microfarad range, we expect the capacitance of this spherical configuration to be on the order of picofarads. The potential difference should be sufficiently low to avoid sparking through the air that separates the shells. Part 2 of 4 - Categorize We will calculate the capacitance from the equation for a spherical shell capacitor. We will then calculate the voltage found from Q = CAV.arrow_forwardI need help figuring out how to do part 2 with the information given in part 1 and putting it in to the simulation. ( trying to match the velocity graph from the paper onto the simulation to find the applied force graph) Using this simulation https://phet.colorado.edu/sims/cheerpj/forces-1d/latest/forces-1d.html?simulation=forces-1d.arrow_forwardI need help running the simulation to get the result needed.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





