Modern Physics
Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
bartleby

Videos

Textbook Question
Book Icon
Chapter 7, Problem 55E

For states where l = n 1 , the radial probability assumes the general form given in Exercise 54. The proportionality constant that normalizes this radial probability is given in Exercise 64. (a) Show that the expectation value of the hydrogen atom energy potential energy is exactly twice the total energy. (It turns out that this holds no matter what l may be.) (b) Argue that the expectation value of the kinetic energy must be the negative of the total energy.

Blurred answer
Students have asked these similar questions
The Morse potential The harmonic potential, V(x) = ½kx?, is useful start for modelling molecular vibrations, but it has limitations. A realistic potential between to atoms should accurately represent the sharp increase in the potential as two nuclei come in close proximity, and also have the ability for a bond to break: that is, an asymptote V →0 as x →00. One option, as shown in the figure, is the Morse potential: V(r) = D(1 – e-«(r=re))2 15 10 10 15 20 The parameter D is the well depth (or binding energy) of the potential, re is the bond length, and a is the anharmonicity constant.
A spin state of an electron in the vector form is given by 3i X = A 4 %3D (a) Determine the normalization constant A, assuming it to be real and positive. (b) Write down the x using the X+ and X-. If z-component of the spin of the electron is measured, what is the probability of finding the value in +ħ/2? (c) Determine the expectation value and uncertainty of S? in terms of h when the electron is in spin state x. Justify your answer. (d) Determine the expectation value of the product S?S, in terms of h when the electron is in spin state X.
There is a minimum energy of (.5[hbar][omega]) in any vibrating system; this energy is sometimes known as the zero-point motion. (a) Use an argument based on the uncertainty principle to explain why the vibrating system can never have E=0. (b) The hydrogen molecule H2 can be treated as a vibrating system, with an effective force constant k=3.5 x 103 eV/nm2. Compute the zero-point energy of one of the protons in H2. How does it compare with the molecular binding energy of 4.5 eV? (c) Compute the amplitude of the zero-point motion and compare with the atomic spacing of 0.074 nm

Chapter 7 Solutions

Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Atomic Number, Atomic Mass, and the Atomic Structure | How to Pass ChemistryThe Nucleus: Crash Course Chemistry #1; Author: Crash Course;https://www.youtube.com/watch?v=FSyAehMdpyI;License: Standard YouTube License, CC-BY