Modern Physics
Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
Question
Book Icon
Chapter 7, Problem 75E

(a)

To determine

To Calculate:Transition time from first excited state to ground state.

(b)

To determine

To Calculate:The wavelength of the emitted photon

Blurred answer
Students have asked these similar questions
An atom in an excited state of 4.7 eV emits a photon and ends up in the ground state. The lifetime of the excited state is 1.0 x 10-13 s. (a) What is the energy uncertainty of the emitted photon? (b) What is the spectral line width (in wavelength) of the photon?
(b) An electron confined in a one dimensional box emits a 200 nm photon in a quantum jump from n = 2 to n = 1. What is the length of the box? The mass of an electron is 9.11 x 1031 kg. (c) A proton confined in a one dimensional box emits a 2.0 MeV gamma-ray photon in a quantum jump from n = 2 to n = 1. What is the length of the box? The mass of a proton is 1.67 x 1027 kg.
This question is for modern physics and wave and particle:   (a) To how small a region must an electron be confined for borderline relativistic speeds – say, 0.05c – to become reasonably likely? (Ans: 3.9×10^−12m ) (b) On the basis of this, would you expect relativistic effects to be prominent for hydrogen’s electron, which has an orbit radius near 10-10? For a lead atom “inner-shell” electron of orbit radius 10-12m?

Chapter 7 Solutions

Modern Physics

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning