Concept explainers
Coulomb Friction Revlslted In Problem 27 in Chapter 5 in Review we examined a spring/mass system in which a mass m slides over a dry horizontal surface whose coefficient of kinetic friction is a constant μ. The constant retarding force fk = μmg of the dry surface that acts opposite to the direction of motion is called Coulomb friction after the French physicist Charles-Augustin de Coulomb (1736–1806). You were asked to show that the piecewise-linear differential equation for the displacement x(t) of the mass is given by
- (a) Suppose that the mass is released from rest from a point x(0) = x0 > 0 and that there are no other external forces. Then the differential equations describing the motion of the mass m are
x″ + ω2x = F, 0 < t < T/2
x″ + ω2x = −F, T/2 < t < T
x″ + ω2x = F, T < t < 3T/2,
and so on, where ω2 = k/m, F = fk/m = μg, g = 32, and T = 2π/ω. Show that the times 0, T/2, T, 3T/2, ... correspond to x′(t) = 0.
- (b) Explain why, in general, the initial displacement must satisfy ω2 |x0| > F.
- (c) Explain why the interval −F/ω2 ≤ x ≤ F/ω2 is appropriately called the “dead zone” of the system.
- (d) Use the Laplace transform and the concept of the meander function to solve for the displacement x(t) for t ≥ 0.
- (e) Show that in the case m = 1, k = 1, fk = 1, and x0 = 5.5 that on the interval [0, 2π) your solution agrees with parts (a) and (b) of Problem 28 in Chapter 5 in Review.
- (f) Show that each successive oscillation is 2F/ω2 shorter than the preceding one.
- (g) Predict the long-term behavior of the system.

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
Differential Equations with Boundary-Value Problems
- 12:05 MA S 58 58. If f(x) = ci.metaproxy.org 25 2xon [0, 10] and n is a positive integer, then there is some Riemann sum Sthat equals the exact area under the graph of ƒ from x = Oto x = 10. 59. If the area under the graph of fon [a, b] is equal to both the left sum L, and the right sum Rfor some positive integer n, then fis constant on [a, b]. 60. If ƒ is a decreasing function on [a, b], then the area under the graph of fis greater than the left sum Land less than the right sum R₂, for any positive integer n. Problems 61 and 62 refer to the following figure showing two parcels of land along a river: River Parcel 2 Parcel 1 h(x) 500 ft 1,000 ft. Figure for 61 and 62 61. You want to purchase both parcels of land shown in the figure and make a quick check on their combined area. There is no equation for the river frontage, so you use the average of the left and right sums of rectangles covering the area. The 1,000-foot baseline is divided into 10 equal parts. At the end of each…arrow_forwardStan(x)√√2+ √√4 59 4 + cos(x)dxarrow_forwardNo chatgpt pls will upvotearrow_forward
- If a snowball melts so that its surface area decreases at a rate of 10 cm²/min, find the rate (in cm/min) at which the diameter decreases when the diameter is 12 cm. (Round your answer to three decimal places.) cm/minarrow_forwardया it 11 if the mechanism is given, then using Newton's posterior formula for the derivative Lind P(0.9) × 0 0.2 0.4 0.6 0.8 1 f 0 0.12 0.48 1.1 2 3.2arrow_forwardConsider an MA(6) model with θ1 = 0.5, θ2 = −25, θ3 = 0.125, θ4 = −0.0625, θ5 = 0.03125, and θ6 = −0.015625. Find a much simpler model that has nearly the same ψ-weights.arrow_forward
- Let {Yt} be an AR(2) process of the special form Yt = φ2Yt − 2 + et. Use first principles to find the range of values of φ2 for which the process is stationary.arrow_forwardDescribe the important characteristics of the autocorrelation function for the following models: (a) MA(1), (b) MA(2), (c) AR(1), (d) AR(2), and (e) ARMA(1,1).arrow_forwarda) prove that if (x) is increasing then (x~) is bounded below and prove if (is decrasing then (xn) is bounded above- 6) If Xn is bounded and monotone then (Xa) is Convergent. In particular. i) if (xn) is bounded above and incrasing then lim xn = sups xn: ne№3 n700 ii) if (X) is bounded below and decrasing then I'm Xn = inf\x₂,neN} 4500 143arrow_forward
- 5. Consider the following vectors 0.1 3.2 -0-0-0 = 5.4 6.0 = z= 3 0.1 For each of exercises a-e, either compute the desired quantity by hand with work shown or explain why the desired quantity is not defined. (a) 10x (b) 10-27 (c) J+Z (d) (x, y) (e) (x, z)arrow_forward1) let X: N R be a sequence and let Y: N+R be the squence obtained from x by di scarding the first meN terms of x in other words Y(n) = x(m+h) then X converges to L If and only is y converges to L- 11) let Xn = cos(n) where nyo prove D2-1 that lim xn = 0 by def. h→00 ii) prove that for any irrational numbers ther exsist asquence of rational numbers (xn) converg to S.arrow_forwardConsider the graph/network plotted below. 1 6 5 3 Explicitly give (i.e., write down all of the entries) the adjacency matrix A of the graph.arrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education





