Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 4CQ
How do basketball players jump straight up into the air? Your explanation should include an interaction diagram and a free-body diagram.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
NO NEED FOR SOLUTION. I ONLY NEED A PRECISE FREE BODY DIAGRAM FOR THE QUESTION. THANK YOU
To raise money for a university scholorship fund, the new IT dean has volunteered to bungee jump from a crane if contributions can be found for 10 scholarshipis. To add some interest, the jump will be made from 42 m above a pool of water. A 30 m bungee cord would be attached to the dean. First you must convince the dean that your plan is safe for a person of his mass, 70 kg. The dean knows that as the bungee cord begins to stretch, it will exert a force which has the same properties a the force exerted by a spring. Your plan has the dean stepping off a platform and being in free fall for 30 m before the cord begins to stretch. a) Determine the spring constant of the bungee cord so that it stretches only 12 m, which will just keep the dean out of the water. (Assume that the dean is a point like object). b) Using the result of a), find the dean's speed 7 m above the water.
Cliff divers in acapulco dive into the ocean from h=35m high cliffs. The divers are moving 26 m/s downward in the vertical direction. They travel in a straight line over a distance of 4m through the water before momentarily coming to a rest. Assuming the diver jumps with an initial horizontal velocity of 3.5 m/s. What is the magnitude of the net force on a 70 kg diver?
Chapter 7 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 7 - You find yourself in the middle of a frozen lake...Ch. 7 - How does a sprinter sprint? What is the forward...Ch. 7 - How does a rocket take off? What is the upward...Ch. 7 - How do basketball players jump straight up into...Ch. 7 - A mosquito collides head-on with a car traveling...Ch. 7 - A mosquito collides head-on with a car traveling...Ch. 7 - A small car is pushing a large truck. They are...Ch. 7 - A very smart 3-year-old child is given a wagon for...Ch. 7 - Teams red blue are having a tug-of-war. According...Ch. 7 - Will hanging a magnet in front of the iron cart in...
Ch. 7 - FIGURE Q7.11 shows two masses at rest. The string...Ch. 7 - FIGURE Q7.12 shows two masses at rest. The string...Ch. 7 - The hand in FIGURE Q7.13 is pushing on the back of...Ch. 7 - A and B in FIGURE Q7.14 are connected by a...Ch. 7 - In case a in FIGURE Q7.15, block A is accelerated...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises I through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - a. How much force does an 80 kg astronaut exert on...Ch. 7 - Block B in FIGURE EX7.7 rests on a surface for...Ch. 7 - A 1000 kg car pushes a 2000 kg truck that has a...Ch. 7 - with masses of 1 kg, 2 kg, and 3 kg are lined up...Ch. 7 - A 3000 kg meteorite falls toward the earth. What...Ch. 7 - The foot of a 55 kg sprinter is on the ground for...Ch. 7 - A steel cable lying flat on the floor drags a 20...Ch. 7 - An 80 kg spacewalking astronaut pushes off a 640...Ch. 7 - The sled dog in FIGURE EX7.14 drags sleds A and B...Ch. 7 - Two-thirds of the weight of a 1500 kg car rests on...Ch. 7 - FIGURE EX7.16 shows two 1.0 kg blocks connected by...Ch. 7 - What is the tension in the rope of Figure EX7.17?...Ch. 7 - A 2.0-m-long, 500 g rope pulls a 10 kg block of...Ch. 7 - A woman living in a third-story apartment is...Ch. 7 - Two blocks are attached to opposite ends of a...Ch. 7 - The cable cars in San Francisco are pulled along...Ch. 7 - A 2.0 kg rope hangs from the ceiling. What is the...Ch. 7 - A mobile at the art museum has a 2.0 kg steel cat...Ch. 7 - The 1.0 kg block in FIGURE EX7.24 is tied to the...Ch. 7 - The 100 kg block in FIGURE EX7.25 takes 6.0 s to...Ch. 7 - FIGURE P7.26 shows two strong magnets on opposite...Ch. 7 - FIGURE P7.27 shows a 6.0 N force pushing two...Ch. 7 - 28. A rope of length L and mass m is suspended...Ch. 7 - Prob. 29EAPCh. 7 - 30. A Federation starship (2.0 × 106 kg) uses its...Ch. 7 - Your forehead can withstand a force of about 6.0...Ch. 7 - Bob, who has a mass of 75 kg, can throw a 500 g...Ch. 7 - Two packages at UPS start sliding down the 20°...Ch. 7 - The two blocks in FIGURE P7.34 are sliding down...Ch. 7 - The coefficient of static friction is 0.60 between...Ch. 7 - The block of mass M in FIGURE P7.36 slides on a...Ch. 7 - The 10.2 kg block in FIGURE P7.37 is held in place...Ch. 7 - The coefficient of kinetic friction between the...Ch. 7 - FIGURE P7.39 shows a block of mass m resting on a...Ch. 7 - A4.0 kg box is on a frictionless 35° slope and is...Ch. 7 - Prob. 41EAPCh. 7 - The 2000 kg cable car shown in FIGURE P7.42...Ch. 7 - The century-old ascensores in Valparaiso, Chile,...Ch. 7 - A 3200 kg helicopter is flying horizontally. A 250...Ch. 7 - A house painter uses the chair-and-pulley...Ch. 7 - A long, 1.0 kg rope hangs from a support that...Ch. 7 - Prob. 47EAPCh. 7 - Prob. 48EAPCh. 7 - Find an expression for the magnitude of the...Ch. 7 - Prob. 50EAPCh. 7 - Prob. 51EAPCh. 7 - Prob. 52EAPCh. 7 - The lower block in FIGURE CP7.53 is pulled on by a...Ch. 7 - Prob. 54EAPCh. 7 - Prob. 55EAPCh. 7 - A 40-cm-diameter, 50-cm-tall, 15 kg hollow...Ch. 7 - 57. FIGURE CP7.57 shows a 200 g hamster sitting on...Ch. 7 - Prob. 58EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Draw a free-body diagram for the burglar, who is shown at rest while sneaking through a chimney in Figure P6.6.arrow_forwardA diver with a mass of 110 kg on a high board 10.0m above the water’s surface dives off the board into the pool and continues straight downwards underwater for 2.0m until she is eventually brought to a halt by the water. What is the average force the water exerts on the swimmer as it slows her down?arrow_forwardA 50-kg cart is rolling across the floor with an initial speed of 4 m/s toward a glass window which is 5 m away. Unless you push against the cart to help stop the cart will not stop in time to keep from rolling into the window. The coefficient of friction against the cart is 0.15. You step in front of the cart and push against the motion. You will find what force you need to push in order to stop the cart in a distance of 5 m. what is the net force? what is the force of friction on the cart? what is the force of the push?arrow_forward
- A car traveling at 20 m s" collides with a nassive wall and stops instantly. A passenger of mass 75 kg, who is wearing a scat belt, is brought to rest in 0.2 s. What force does the seal belt exert on the passenger. A B D 300 N E 750 N 6500 N 3750 N 7500 Narrow_forwardTwo blocks rest on a frictionless surface as shown. The slope part has an angle of 40◦(A) Draw freebody diagrams for both objects.(B) Write out an equation for the acceleration of the lighter block. Leave all unknowns as letters and put in numerical values for all terms that you can.(C) Write out an equation for the acceleration of the heavier block. Leave all unknowns as letters and put in numerical values for all terms that you can.(D) Would it be possible to solve the system of equations you have written in parts (B) and (C) to find the acceleration? (If you have done everything correctly, it will be possible, but this question is asking about the equations you have written out. If you have done something incorrectly, you can get credit for realizing it.) You do not have to solve this system of equations.arrow_forwardSuperman must stop a 105-km/h train in 100 m to keep it from hitting a stalled car on the tracks. The train's mass is 3.6 × 105 kg. A.) Determine the force that must be exerted on the train. Express your answer to two significant figures and include the appropriate units. Enter positive value if the direction of the force is in the direction of the initial velocity and negative value if the direction of the force is in the direction opposite to the initial velocity. FTS =_____________________ ______________________ B.) Compare the magnitudes of the force exerted on the train and the weight of the train (give as %%). Express your answer using two significant figures. FTS/mg = _______________________% C.) How much force does the train exert on Superman? Express your answer to two significant figures and include the appropriate units. Enter positive value if the direction of the force is in the direction of the initial velocity and negative value if the direction of the force is…arrow_forward
- The "Giant Swing" at a county fair consists of a vertical central shaft with a number of horizontal arms attached at its upper end as shown in (Figure 1). Each arm supports a seat suspended from a 5.00-mm-long rod, the upper end of which is fastened to the arm at a point RRR = 1.80 mm from the central shaft. a)Make a free-body diagram of the seat, including the person in it. Draw the force vectors with their tails starting from the center of the dot. The location and orientation of your vectors will be graded. The exact length of your vectors will not be graded. b)Find the time of one revolution of the swing if the rod supporting the seat makes an angle of θθtheta = 32.0 ∘with the vertical.arrow_forwardA person jumps then leaves the floor with a velocity of 1.20 m/s upward. If the person is in contact with the floor for 0.280 s during the jump, what is the net force exerted by the floor on the person? The mass of the person is 80.0-kg. Your answerarrow_forwardAn engine slows as it pulls two cars of an excursion train up a mountain. Draw a visual overview (motion diagram, force identification diagram, and free-body diagram) for the car just behind the engine. Ignore friction.arrow_forward
- I need help with this question. I also don’t know how to draw the free body diagram for this problemarrow_forwardPlease show how to do a free body diagramarrow_forwardTo help reduce severity of accidents, an engineering company designs large plastic barrels filled with antifreeze that can be placed in front of bridge supports. In a simple test, a 1200 kg car moving at 20 m/s [W] crashes into several barrels. The car slows down to 8.0 m/s [W) in 0.40 s a) Find the average net force acting on the car during the collision. b) What would happen to the average net force if the car in the test hit a bridge support directly, instead of the barrels? Explain your reasoning. You may assume that the bridge supports are not severely damaged during the collision. c) Why is it important to use antifreeze in the barrels, instead of just water, if the barrels will be used in Canada? Explain by discussing the effect this would have on the net force.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY