Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 2CQ
How does a sprinter sprint? What is the forward force on a sprinter as she accelerates? Where does that force come from? Your explanation should include an interaction diagram and a free-body diagram.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Draw free-body diagrams for these situations. Be sure to draw your coordinate axes and draw separate FBDs for everything in the system and to write out the ? F = m a equations in all relevant dimensions.
A locomotive pulls a train of 3 boxcars up a hill at angle ? up from horizontal . Draw FBDs for the locomotive and each of the boxcars.
Draw a diagram of the situation and label the givens in the problem: The cart's mass and the hanger's mass. Also label the direction of the cart and hanger's acceleration.
Draw two force diagrams. One for the cart and one for the hanger. You can treat the track as frictionless. Remember that the force in the string will be the same throughout the entire string.
Then define an x-y coordinate system and find the x and y components of the forces in your diagrams.
Draw free-body diagrams for these situations. Be sure to draw your coordinate axes and draw separate FBDs for everything in the system and to write out the ? F = m a equations in all relevant dimensions.
An apple falls out of a tree.
Chapter 7 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 7 - You find yourself in the middle of a frozen lake...Ch. 7 - How does a sprinter sprint? What is the forward...Ch. 7 - How does a rocket take off? What is the upward...Ch. 7 - How do basketball players jump straight up into...Ch. 7 - A mosquito collides head-on with a car traveling...Ch. 7 - A mosquito collides head-on with a car traveling...Ch. 7 - A small car is pushing a large truck. They are...Ch. 7 - A very smart 3-year-old child is given a wagon for...Ch. 7 - Teams red blue are having a tug-of-war. According...Ch. 7 - Will hanging a magnet in front of the iron cart in...
Ch. 7 - FIGURE Q7.11 shows two masses at rest. The string...Ch. 7 - FIGURE Q7.12 shows two masses at rest. The string...Ch. 7 - The hand in FIGURE Q7.13 is pushing on the back of...Ch. 7 - A and B in FIGURE Q7.14 are connected by a...Ch. 7 - In case a in FIGURE Q7.15, block A is accelerated...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises I through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - a. How much force does an 80 kg astronaut exert on...Ch. 7 - Block B in FIGURE EX7.7 rests on a surface for...Ch. 7 - A 1000 kg car pushes a 2000 kg truck that has a...Ch. 7 - with masses of 1 kg, 2 kg, and 3 kg are lined up...Ch. 7 - A 3000 kg meteorite falls toward the earth. What...Ch. 7 - The foot of a 55 kg sprinter is on the ground for...Ch. 7 - A steel cable lying flat on the floor drags a 20...Ch. 7 - An 80 kg spacewalking astronaut pushes off a 640...Ch. 7 - The sled dog in FIGURE EX7.14 drags sleds A and B...Ch. 7 - Two-thirds of the weight of a 1500 kg car rests on...Ch. 7 - FIGURE EX7.16 shows two 1.0 kg blocks connected by...Ch. 7 - What is the tension in the rope of Figure EX7.17?...Ch. 7 - A 2.0-m-long, 500 g rope pulls a 10 kg block of...Ch. 7 - A woman living in a third-story apartment is...Ch. 7 - Two blocks are attached to opposite ends of a...Ch. 7 - The cable cars in San Francisco are pulled along...Ch. 7 - A 2.0 kg rope hangs from the ceiling. What is the...Ch. 7 - A mobile at the art museum has a 2.0 kg steel cat...Ch. 7 - The 1.0 kg block in FIGURE EX7.24 is tied to the...Ch. 7 - The 100 kg block in FIGURE EX7.25 takes 6.0 s to...Ch. 7 - FIGURE P7.26 shows two strong magnets on opposite...Ch. 7 - FIGURE P7.27 shows a 6.0 N force pushing two...Ch. 7 - 28. A rope of length L and mass m is suspended...Ch. 7 - Prob. 29EAPCh. 7 - 30. A Federation starship (2.0 × 106 kg) uses its...Ch. 7 - Your forehead can withstand a force of about 6.0...Ch. 7 - Bob, who has a mass of 75 kg, can throw a 500 g...Ch. 7 - Two packages at UPS start sliding down the 20°...Ch. 7 - The two blocks in FIGURE P7.34 are sliding down...Ch. 7 - The coefficient of static friction is 0.60 between...Ch. 7 - The block of mass M in FIGURE P7.36 slides on a...Ch. 7 - The 10.2 kg block in FIGURE P7.37 is held in place...Ch. 7 - The coefficient of kinetic friction between the...Ch. 7 - FIGURE P7.39 shows a block of mass m resting on a...Ch. 7 - A4.0 kg box is on a frictionless 35° slope and is...Ch. 7 - Prob. 41EAPCh. 7 - The 2000 kg cable car shown in FIGURE P7.42...Ch. 7 - The century-old ascensores in Valparaiso, Chile,...Ch. 7 - A 3200 kg helicopter is flying horizontally. A 250...Ch. 7 - A house painter uses the chair-and-pulley...Ch. 7 - A long, 1.0 kg rope hangs from a support that...Ch. 7 - Prob. 47EAPCh. 7 - Prob. 48EAPCh. 7 - Find an expression for the magnitude of the...Ch. 7 - Prob. 50EAPCh. 7 - Prob. 51EAPCh. 7 - Prob. 52EAPCh. 7 - The lower block in FIGURE CP7.53 is pulled on by a...Ch. 7 - Prob. 54EAPCh. 7 - Prob. 55EAPCh. 7 - A 40-cm-diameter, 50-cm-tall, 15 kg hollow...Ch. 7 - 57. FIGURE CP7.57 shows a 200 g hamster sitting on...Ch. 7 - Prob. 58EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 5.0 kg) on a tilted wooden board with an angle of 0 = 30 There is a metal block (m from the horizontal. The block is initially at rest. The coefficient of static friction u, is equal to 0.55 and the coefficient of kinetic friction ux is 0.40. a) Draw a free body diagram of the metal block on the figure. Label and write all the forces in unit-vector notation with their magnitude (in variables) on the diagram below. b) Note that F, = 0, because the block can only move %3D along the board. Calculate the normal force. c) Will the block slide down? Show your calculations to support your answer. d) If your answer is "yes" in (c), then what is the acceleration of the block? (Note that F: If your answer is "no" in (c), then what is the static friction on the block? та.) %3Darrow_forwardAn aircraft carrier uses a device called a catapult to help accelerate jets to the speed needed for take off. The flight decks on these carriers have length d = 82 m. A jet with a mass of m = 12571 kg can be accelerated from rest to a speed of v = 49 m/s by the end of the flight deck. A.) calculate the numerical value of the magnitude of force F in newtons. B.) Wht is the numerical value of the ratio of the launch force F to the jets weight?arrow_forward54 l e Y:10 2_5303180683705846622.pdf Figure 3/1 e sling BAC is used to lift the 10-kN load with constant velocity. By drawing the free-body diagram for the ring at A, atermine the magnitude of the force in the sling as a function of the angle e. 10 kN Be Carrow_forward
- A rifle shoots a 4.30 g bullet out of its barrel. The bullet has a muzzle velocity of 985 m/s just as it leaves the barrel. Assuming a constant horizontal acceleration over a distance of 43.0 cm starting from rest, with no friction between the bullet and the barrel. What force does the rifle exert on the bullet while it is in the barrel? b. Draw a free-body diagram of the bullet while it is in the barrel. Draw a free-body diagram of the bullet just after it has left the barrel. d. How many g 's of acceleration does the rifle give this bullet? e. For how long a time is the bullet in the barrel? a. с. The figarrow_forwardA rope of negligible mass is connected to a 4-kg block situated on a horizontal frictionless surface. The rope passes over a pulley with negligible friction and mass, where a block with mass m hangs from the other side. When the two blocks were let go, the rope yielded a 15-N tension force.arrow_forwardA block of mass ?= 4.50 kg is pushed by a force ?⃗ of magnitude 8.80 N on a horizontal, smooth (frictionless) surface. The force makes an angle θ= 30. 0∘below the horizontal, as shown in the figure. a. Draw a free body diagram of the block b. Find the normal force exerted by the surface on the block. c. Find the acceleration of the block.arrow_forward
- A 23 kg child goes down a straight slide inclined 38° above horizontal. The child is acted on by his weight, the normal force from the slide, and kinetic friction.a. Draw a free-body diagram of the child.b. How large is the normal force of the slide on the child?arrow_forwardPlease help me to answer this 2 questions. Thank you!arrow_forwardA 5.85kg object is attached to two 5.0m-long cablesand swung around in a circle at 14.8m/s. See the diagram below andassume there is no frictioninvolved. a.Draw a free-body diagram for the mass from the world’s (inertial) reference frame b.What is the acceleration of the mass from the world’s (inertial) reference frame? c.Draw afree-body diagram for the mass from the frame of reference of the 5.85kg object d.What is the acceleration of the mass from the frame of reference of the 5.85kg object? e.Determine the tension in the two strings, and explain why the tensions are not the samearrow_forward
- Block 1 (7.5 kg) is resting on the surface of a table. A hand pushes vertically down on block 1 with a force of 240. N.On a sheet of paper, draw the free body diagram for block 1 using the two-subscript notation from class. After completing the free body diagram, enter below each force and its x & y-components. Remember that the x-component is the "i" component and the y-component is the "j" component. FORCES on BLOCK 1Weight force on block 1 by Earth: (two-subscript notation)Value = i + j N Normal force on block 1 by Hand: (two-subscript notation)Value = i + j N Normal force on block 1 by Surface: (two-subscript notation)Value = i + j Narrow_forwardHi there, I need some help on drawing this free body diagram for this scenario. I do know that normal force, weight, drag, and kinetic friction forces are the ones that are acting in this scenario. I just can't seem to get the diagram drawn correctly, supposing the car is moving to the right. Scenario: Your car is skidding to a stop from a high speed. Thank you!arrow_forwardA 3.0-kg box is held at rest against a vertical wall by a pushing force from my hand. Use g = 10 m/s². Match the anwers with questions. (Hint: Draw a proper free-body diagram.) 120 N 3 kg What is the magnitude and direction of the weight force on the box from the earth? What is the magnitude and direction of the pushing force on the box from the hand? ◆ What is the magnitude and direction of the normal force on the box from the wall? What is the magnitude and direction of the friction force on the box from the wall? What is the net force on the box? A. 120 N, down B. 30 N, to the left C. zero, therefore no direction D. 30 N, down E. 120 N, to the left F. 30 N, up G. 120 N, up H. 120 N, to the right I. none of the given J. 30 N, to the rightarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License