COSMIC PERSPECTIVE LL FD
9th Edition
ISBN: 9780135877074
Author: Bennett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 49EAP
Planetary Parallax. Suppose observers at Earth’s North Pole and South Pole use a transit of the Sun by Venus to discover that the angular size of Earth as viewed from Venus would be 62.8 arcseconds. Earth’s radius is 6378 kilometers. Estimate the distance between Venus and Earth in kilometers and AU. Compare your answer with information from the chapter.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Part 3
1. The diameter of the Sun is 1,391,400 km. The diameter of the Moon is 3,474.8 km. Find
the ratio, r= Dsa/Dsvan between the sizes.
2. From the point of view of an obs erver on Eanth (consider the Earth as a point-like object),
during the eclipse, the Moon covers the Sun exactly. Sketch a picture to illustrate this
fact. Use a nuler to get a straight line. Your drawing does not need to be in scale.
3. The Sun is 1 Astronomical Unit (AU) away from the Earth. Find the distance between the
Earth and the Moon in AU's using the ratio of similar triangles. Show your work.
DEM=
AU.
Convert this to kilometers. Use 1 AU = 149,600,000 km.
DEM =
km.
2. On August 27, 2003, the planet Mars was at a distance of 0.373 AU from Earth. The
diameter of Mars is 6788 km.
a) Calculate the angular diameter of Mars, as seen from Earth on August 27, 2003. Give
your answer in arcminutes.
1. Planet A has an orbital period of 12 years and radius that is 0.033 times the radius of the star. Calculate the fractional dip of the star brightness in the case that planet A is transiting. Give the answer as a number. Quote the formula you use and explain any assumptions you have to make.
2. Planet B has an orbital period of 1 year and is located closer to its star than planet A. You succeed in detecting planet B with the radial velocity technique as well! From this measurement you calculate a minimum mass of planet B to be 75% that of the Earth. (a) Since you detect the planet with both transit method and radial velocity method, what do you know about the inclination of the planetary system? (b) Given this inclination, estimate the true mass of planet B (in units of Earth mass). You do not need to do a detailed calculation, just explain the argument.
3. You also measure the radius of planet B to be the same as Earth, one Earth radius. (a) How does the density of planet B compare…
Chapter 7 Solutions
COSMIC PERSPECTIVE LL FD
Ch. 7 - Prob. 1VSCCh. 7 - Use the following questions to check your...Ch. 7 - Use the following questions to check your...Ch. 7 - Use the following questions to check your...Ch. 7 - What do we mean by comparative planetology? Does...Ch. 7 - What would the solar system look like to your...Ch. 7 - Briefly describe the overall layout of the solar...Ch. 7 - For each of the objects in the solar system tour...Ch. 7 - Briefly describe the patterns of motion that we...Ch. 7 - What are the basic differences between the...
Ch. 7 -
7. What do we mean by hydrogen compounds? In...Ch. 7 -
8. What are asteroids? What are comets? Describe...Ch. 7 - What kind of object in Pluto? Explain.Ch. 7 - What is the Kuiper belt? What is the Oort cloud?...Ch. 7 - Describe at least two “exceptions to the rules”...Ch. 7 - Describe and distinguish between space missions...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Why Wait? To explore a planet, we often send first...Ch. 7 - Prob. 35EAPCh. 7 - Prob. 37EAPCh. 7 - Patterns of Motion. In one or two paragraphs,...Ch. 7 - Solar System Trends. Answer the following based on...Ch. 7 - Comparing Planetary Conditions. Use both Table 7.1...Ch. 7 - Prob. 41EAPCh. 7 - Size Comparisons. How many Earths could fit inside...Ch. 7 - Asteroid Orbit. Ceres, the largest asteroid, has...Ch. 7 - Density Classification. Calculate the density of a...Ch. 7 - Comparative Weight. Suppose you weigh 100 pounds....Ch. 7 - New Horizons Speed. On its trajectory to Pluto,...Ch. 7 - Planetary Parallax. Suppose observers at Earth’s...
Additional Science Textbook Solutions
Find more solutions based on key concepts
How does the removal of hydrogen atoms from nutrient molecules result in a loss of energy from the nutrient mol...
SEELEY'S ANATOMY+PHYSIOLOGY
1. Rub your hands together vigorously. What happens? Discuss the energy transfers and transformations that take...
College Physics: A Strategic Approach (3rd Edition)
An electric motor has an effective resistance of 32.0 and an inductive reactance of 45.0 when working under l...
Fundamentals of Physics Extended
How does trandlation differ from transcription?
Microbiology: Principles and Explorations
Gregor Mendel never saw a gene, yet he concluded that some inherited factors were responsible for the patterns ...
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- - How far (in km) is 3.5 lightyears(ly) – the distance traveled by light in one Earth year? - How much is this same value in parsecs and (C) in astronomical units (AU)? Use 299,732 km/s for the speed of light (c) and 1 year = 365 days. Show your solution and write your answer in both regular notation and scientific notation.arrow_forwardThe table below presents the semi-major axis (a) and Actual orbital period for all of the major planets in the solar system. Cube for each planet the semi-major axis in Astronomical Units. Then take the square root of this number to get the Calculated orbital period of each planet. Fill in the final row of data for each planet. Table of Data for Kepler’s Third Law: Table of Data for Kepler’s Third Law: Planet aau = Semi-Major Axis (AU) Actual Planet Calculated Planet Period (Yr) Period (Yr) __________ ______________________ ___________ ________________ Mercury 0.39 0.24 Venus 0.72 0.62 Earth 1.00 1.00 Mars 1.52 1.88 Jupiter…arrow_forwardIf you observed the Solar System from the nearest star (distance = 1.3 parsecs), what would the maximum angular separation be between Earth and the Sun? (Note: 1 pc is 2.1105 AU.) (Hint: Use the small-angle formula in Reasoning with Numbers 3-1.)arrow_forward
- How would you solve this problem??arrow_forwardGive me the right answer please and thank you, take your timeCalculate the amount of time it takes for light reflected off the surface of a distant planet to reach us.1. Sunlight takes about 8.3 minutes to travel from the Sun to Earth. What is the Sun-Earth distance in AU? (Give your answer rounded to the nearest AU).2.Light is reflected off the surface of a planet 5.2 AU away from us. How long does it take this light to reach us from the planet? Give your answer in minutes, rounded to exactly one decimal place.arrow_forwardThe angle on the sky between Venus and the Sun is measured to be 46.3° when Venus is at greatest eastern elongation. What is the distance of Venus from the Sun, measured in AU? Choose the answer below that most closely matches your answer. Select one: а. 1.763 AU O b. 0.587 AU Ос. 0.652 AU O d. 0.846 AU Ое. 0.723 AUarrow_forward
- Please answer the question and subquestions completely! This is one whole question which has subquestions! According to the official Bartleby guidelines, each question can have up to two subquestions! Thank you! 1) Use Kepler's Law to find the time (in Earth’s years) for Mars to orbit the Sun if the radius of Mars’ orbit is 1.5 times the radius of Earth's orbit. 1.8 2.8 3.4 4.2 A) The mass of Mars is about 1/10 the mass of Earth. Its diameter is about 1/2 the diameter of Earth. What is the gravitational acceleration at the surface of Mars? 9.8 m/s2 2.0 m/s2 3.9 m/s2 4.9 m/s2 none of these B) A 9.0 x 10 3 kg satellite orbits the Earth at the distance of 2.56 x 10 7 m from Earth’s surface. What is its period? 1.1 x 10 4 s 4.1 x 10 4 s 5.7 x 10 4 s 1.5 x 10 5 sarrow_forwarda method for determining the sizes of the orbits of pl from the sun than Earth. His method involved noting of days between the times that a planet was in the pc A and B in the diagram. Using this time and the num each planet's year, he calculated c and d. a. For Mars, c= 55.2 and d= 103.8. How far is Mars in astronomical units (AU)? One astronomical un the average distance from Earth to the center of th 93 million miles. b. For Jupiter, c 21.9 and d= 100.8. How far is Jup %3D sun in astronomical units? lo olpno er ort to rt .onte eteem-21 o to bre e ne ern 100 o ho aotem t elbl erl pnibioda lert pribiortarrow_forwardNext you will (1) convert your measurement of the semi-major axis from arcseconds to AU, (2) convert your measurement of the period from days to years, and (3) calculate the mass of the planet using Newton's form of Kepler's Third Law. Use Stellarium to find the distance to the planet when Skynet took any of your images, in AU. Answer: 4.322 AU Use this equation to determine a conversion factor from 1 arcsecond to AU at the planet's distance. You will need to convert ? = 1 arcsecond to degrees first. Answer: 2.096e-5 AU (2 x 3.14 x 4.322 x (.000278/360) = 2.096e-5) Next, use this number to convert your measurement of the moon's orbital semi-major axis from arcseconds to AU. A) Calculate a in AU. B) Convert your measurement of the moon's orbital period from days to years. C) By Newton's form of Kepler's third law, calculate the mass of the planet. D) Finally, convert the planet's mass to Earth masses: 1 solar mass = 333,000 Earth masses.arrow_forward
- As we discuss in class, the radius of the Earth is approximately 6370 km. Theradius of the Sun, on the other hand, is approximately 700,000 km. The Sun is located,on average, one astronomical unit (1 au) from the Earth. Imagine that you stand near Mansueto Library, at the corner of 57th and Ellis.Mansueto’s dome is 35 feet (10.7 meters) high. Let’s imagine we put a model of theSun inside the dome, such that it just fits — that is, the model Sun’s diameter is 35 feet The nearest star to the Solar System outside of the Sun is Proxima Centauri,which is approximately 4.2 light years away. Given the scale model outlined above,how far would a model Proxima Centauri be placed from you? Give your answer inmiles and kmarrow_forwardUse the circumference and speed to figure out how long the Sun takes to go once around the Galaxy (the Sun's period, sometimes called the "galactic year.") Give your answer in Earth years. Be careful with your units.arrow_forwardI am trying to calculate the gravitational mass (in solar masses) I have the formula M= V^2 R / G (4.31 x 10^-6) The paperwork says our numbers should be big but I am coming up with .002 etc. What am I doing wrong?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY