COSMIC PERSPECTIVE LL FD
9th Edition
ISBN: 9780135877074
Author: Bennett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 1EAP
What do we mean by comparative planetology? Does it apply only to planets?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Given what you've learned about the solar nebula idea, what do you believe the likelihood is of discovering livable planets in other solar systems? Learn more about this search by visiting NASA's Kepler mission and writing a half-page overview of the project.
We need to create a scale model of the solar system (by shrinking the sun down to the size of a basketball or ~30cm). First, we will need to scale down actual solar system dimensions (planet diameters and average orbital radiuses) by converting our units. There are two blank spaces in the table below. We will effectively fill in the missing data in the next set of questions. Use the example below to help you.
Example: What is the scaled diameter of Mercury if the Sun is scaled to the size of a basketball (30 cm)?
The actual diameter of Mercury is 4879 km
The Sun's diameter is 1392000 km
If the Sun is to be reduced to the size of a basketball, then the conversion we need for this equation will be:
30cm1392000km
Here is how we run the conversion: 4879km×30cm1392000km=0.105cm or 0.11cm if we were to round our answer.
This means that if the sun in our model is the size of a basketball, Mercury is the size of a grain of sand. We can also see by looking at the table, that we would…
The solar nebula idea suggests that other solar systems may include livable planets, but how likely is this? A half-page synopsis of NASA's Kepler project is due this week.
Chapter 7 Solutions
COSMIC PERSPECTIVE LL FD
Ch. 7 - Prob. 1VSCCh. 7 - Use the following questions to check your...Ch. 7 - Use the following questions to check your...Ch. 7 - Use the following questions to check your...Ch. 7 - What do we mean by comparative planetology? Does...Ch. 7 - What would the solar system look like to your...Ch. 7 - Briefly describe the overall layout of the solar...Ch. 7 - For each of the objects in the solar system tour...Ch. 7 - Briefly describe the patterns of motion that we...Ch. 7 - What are the basic differences between the...
Ch. 7 -
7. What do we mean by hydrogen compounds? In...Ch. 7 -
8. What are asteroids? What are comets? Describe...Ch. 7 - What kind of object in Pluto? Explain.Ch. 7 - What is the Kuiper belt? What is the Oort cloud?...Ch. 7 - Describe at least two “exceptions to the rules”...Ch. 7 - Describe and distinguish between space missions...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Why Wait? To explore a planet, we often send first...Ch. 7 - Prob. 35EAPCh. 7 - Prob. 37EAPCh. 7 - Patterns of Motion. In one or two paragraphs,...Ch. 7 - Solar System Trends. Answer the following based on...Ch. 7 - Comparing Planetary Conditions. Use both Table 7.1...Ch. 7 - Prob. 41EAPCh. 7 - Size Comparisons. How many Earths could fit inside...Ch. 7 - Asteroid Orbit. Ceres, the largest asteroid, has...Ch. 7 - Density Classification. Calculate the density of a...Ch. 7 - Comparative Weight. Suppose you weigh 100 pounds....Ch. 7 - New Horizons Speed. On its trajectory to Pluto,...Ch. 7 - Planetary Parallax. Suppose observers at Earth’s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Earlier in this chapter, we modeled the solar system with Earth at a distance of about one city block from the Sun. If you were to make a model of the distances in the solar system to match your height, with the Sun at the top of your head and Pluto at your feet, which planet would be near your waist? How far down would the zone of the terrestrial planets reach?arrow_forwardWhat is comparative planetology and why is it useful to astronomers?arrow_forwardHow do terrestrial and giant planets differ? List as many ways as you can think of.arrow_forward
- How does the solar nebula theory explain the orbits of the major planets? Dwarf planets? Does it explain the rotations of the planets? Why or why not?arrow_forwardWhy Wait? To explore a planet, we often send first a flyby, then an orbiter, then a probe or a lander. There’s no doubt that probes and landers give the most close-up detail, so why don’t we send this type of mission first? For the planet of your choice, based just on the information in this chap- ter, give an example of why such a strategy might cause a mission to provide incomplete information about the planet or to fail outright.arrow_forward2arrow_forward
- How do the planets discovered so far around other stars differ from those in our own solar system? List at least two ways.arrow_forwardWhy do we say that Neptune was the first planet to be discovered through the use of mathematics?arrow_forwardPretend you are a NASA executive or a legislator. Design a new mission in our solar system. Pick any object in the system and decide whether you want to send an orbiter, a lander, a rover, some combination or those, a manned mission, or something else. What interests you about this object? What science questions can we answer? In basic terms, what kind of scientific instruments might you want to include on your mission? Justify your decisions with what you know about the scientific method, astronomy techniques, and the object itself from this class.arrow_forward
- In Table 2, there is a list of 15 planets, some of which are real objects discovered by the Kepler space telescope, and some are hypothetical planets. For each one, you are provided the temperature of the star that each planet orbits in degrees Kelvin (K), the distance that each planet orbits from their star in astronomical units (AUs) and the size or radius of each planet in Earth radii (RE). Since we are concerned with finding Earth-like planets, we will assume that the composition of these planets are similar to Earth's, so we will not directly look at their masses, rather their sizes (radii) along with the other characteristics. Determine which of these 15 planets meets our criteria of a planet that could possibly support Earth-like life. Use the Habitable Planet Classification Flow Chart (below) to complete Table 2. Whenever the individual value you are looking at falls within the range of values specified on the flow chart, mark the cell to the right of the value with a Y for…arrow_forwardQ1arrow_forwardHow can sciences be integrated in designing a water arc? Elaborate in complete sentences. i want a lot of reasons not only 1 reason like gravity or physics i want you to provide me with more reasons please and as it said Elaborate in complete sentencesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY