COSMIC PERSPECTIVE LL FD
9th Edition
ISBN: 9780135877074
Author: Bennett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 47EAP
Comparative Weight. Suppose you weigh 100 pounds. Calculate how much you would weigh on each of the other planets in our solar system. Assume you can stand either on the surface or in an airplane in the planet’s atmosphere. (Hint: Recall from Chapter 4 that weight is mass times the acceleration of gravity; the “surface gravity” column in Appendix E tells you how the acceleration of gravity on other planets compares to that on Earth.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The gravity on Mars is about 38% that of Earth's gravity. Let's say some cargo has a mass of 15 kg here on Earth.
First, what would be the weight of that cargo in kilograms on Mars? Explain your answer.
Second, what would be the mass of that cargo in kilograms on Mars? Explain your answer.
Attached is the question. He gave us the equation. I am just confused on where to find "M" earth mass?
M
M
1. What is the gravitational potential energy of the mass (m) in the picture? The mass is the same
distance awayr from the centers of both of the other masses, and both of the other masses have
the same mass, M. Give your answer in Joules.
r= 400 million meters
m = 7x1022 kg
M = 2x1027 kg
2. What is the net gravitational force for the mass m at this location? Give your answer in
Newtons.
Chapter 7 Solutions
COSMIC PERSPECTIVE LL FD
Ch. 7 - Prob. 1VSCCh. 7 - Use the following questions to check your...Ch. 7 - Use the following questions to check your...Ch. 7 - Use the following questions to check your...Ch. 7 - What do we mean by comparative planetology? Does...Ch. 7 - What would the solar system look like to your...Ch. 7 - Briefly describe the overall layout of the solar...Ch. 7 - For each of the objects in the solar system tour...Ch. 7 - Briefly describe the patterns of motion that we...Ch. 7 - What are the basic differences between the...
Ch. 7 -
7. What do we mean by hydrogen compounds? In...Ch. 7 -
8. What are asteroids? What are comets? Describe...Ch. 7 - What kind of object in Pluto? Explain.Ch. 7 - What is the Kuiper belt? What is the Oort cloud?...Ch. 7 - Describe at least two “exceptions to the rules”...Ch. 7 - Describe and distinguish between space missions...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Why Wait? To explore a planet, we often send first...Ch. 7 - Prob. 35EAPCh. 7 - Prob. 37EAPCh. 7 - Patterns of Motion. In one or two paragraphs,...Ch. 7 - Solar System Trends. Answer the following based on...Ch. 7 - Comparing Planetary Conditions. Use both Table 7.1...Ch. 7 - Prob. 41EAPCh. 7 - Size Comparisons. How many Earths could fit inside...Ch. 7 - Asteroid Orbit. Ceres, the largest asteroid, has...Ch. 7 - Density Classification. Calculate the density of a...Ch. 7 - Comparative Weight. Suppose you weigh 100 pounds....Ch. 7 - New Horizons Speed. On its trajectory to Pluto,...Ch. 7 - Planetary Parallax. Suppose observers at Earth’s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Part B. 1. The table below shows the gravitational force between Saturn and some ring particles that are at different distance from the planet. All of the particles have a mass of 1 kg. Table 1. Distance and Gravitational Force Data Distance of 1- Gravitational kg Ring Particle from Force between Saturn and 1-kg ring particle (in | 10,000 N) 2. Use the data in the table to make a graph of the relationship between distance and gravitational force. Label your graph "Gravitational Force and distance". Center of Saturn (in | 1,000 km) 100 38 Hint: Put the data for distance on the horizontal axis and the data for gravitational force on the vertical axis. 120 26 130 22 150 17 3. Look at your graphed data, and record in your answering sheet any relationship you notice. 180 12 200 9. 220 8 250 280 O 5arrow_forwardSuppose you wish to calculate the acceleration of gravity on the surface of a distant planet. What properties of the planet must you know? Justify your answer.Suppose you wish to calculate the acceleration of gravity on the surface of a distant planet. What properties of the planet must you know? Justify your answer.arrow_forwardDescribe the relationship between gravity and planetary motion. What aspects have the greatest influence on the orbits of objects?arrow_forward
- 1.The Curiosity Rover has recently landed on Mars and likes to send Twitter updates on its progress. If a tweet is posted 13 minutes after it was sent, how far is Curiosity from Earth? (Assume there is no network lag.)______________ m 2.You've entered the Great Space Race. Your engines are hearty enough to keep you in second place. While racing, the person in front of you begins to have engine troubles and turns on his emergency lights that emit at a frequency of 5.720 1014 Hz. If the person in front of you is traveling 2692 km/s faster than you when he turns on his lights, what is the frequency of the emergency lights that you observe when it reaches you in your spaceship? (Enter your answer to four significant figures.) ___________Hzarrow_forwardr r M M 1. What is the gravitational potential energy of the mass (m) in the picture? The mass is the same distance away r from the centers of both of the other masses, and both of the other masses have the same mass, M. Give your answer in Joules. r = 400 million meters m = 7x1022 kg м- 2х1027 kg 2. What is the net gravitational force for the mass m at this location? Give your answer in Newtons.arrow_forwardTrue or false the weight of an object measured on planet 3 is a result of gravity ?arrow_forward
- Problem 4. Physical Features of the Giant Planets: Volume and Density of Jupiter (Palen, et. al. 1st Ed. Chapter 8 Problem 57 ) Jupiter is an oblate (Links to an external site.) planet with an average radius of 69,900 km, compared to Earth’s average radius of 6,370 km. How many Earth volumes could fit inside Jupiter? Jupiter is 318 times as massive as the Earth. How does Jupiter’s density compare (Links to an external site.) to that of Earth?arrow_forwardSomewhere far, far away on the other side of our galaxy, there is a new protoplanetary disk where two baby planetesimals are growing. Planetesimal A is currently 5x10° kg, and Planetesimal B is 2x105 kg. If these two planetesimals are 100 meters apart, what is the gravitational force between them? (Hint: the Universal Gravitational Constant (G) is 6.67x10-11 Nm²/kg²) Gm,m2 FG r2 Planetesimal A Planetesimal B 5 x 10°kg 2 x 105kg 100 metersarrow_forwardThis is a preliminary version of the Mars Project - to think about the time it takes to complete a Mars mission. Consider the following simplified Earth to Mars transfer: • Departs Earth • Enter Mars orbit • Orbit Mars orbit for some time • Exit Mars orbit to return • Enter Earth orbit a. What is the flight time, in days, from Earth to Mars? What is the return flight time? [Answer: 258.83 days] b. Where does Mars need to be (outbound) to reach it at the end of the Hohmann transfer (tip: 180° "later"). [Answer: 44.329°] c. To return to Earth with a Hohmann transfer, the opposite will need to be true: Earth must be at a specific angle at the time of departure from Mars for the spacecraft to reach Earth's orbit when Earth is there. What is that angle? [Answer: -75.097°] d. When is the first opportunity to return to Earth for that optimal Hohmann transfer? [Answer: 454.70 days] e. What is the total round trip time to Mars for this ideal Hohmann transfer?arrow_forward
- Write down an expression for the gravitational filed strength of a planet of radius R and density p. Please use "*" for products (e.g. B*A), "/" for ratios (e.g. B/A) and the usual "+" and "-" signs as appropriate without the quotes). For Greek letters such as p and use rho and pi. For gravitational constant, please use G. Please use the "Display response" button to check you entered the answer you expect. Display responsearrow_forwardTwo planets are orbiting a star. Planet A is three times as far away from the star as Planet B, but the gravitational force acting on each planet is the same. How many times more massive is Planet A than Planet B? Group of answer choices A Six times as massive B. Three times as massive C. Four times as massive D. Nine times as massive E. Twice as massive F. None of the abovearrow_forwardFor the following questions, start your analyses by considering at least Newton's Law of Gravitation, centripetal acceleration, Kepler's law or Energy Conservation. Take the Gravitational constant to be a. From Earth we can measure the radius of Mars using our telescopes. An estimate for it is 3.39 x 106 m. By sending an exploratory robot to Mars, we determined the acceleration due to gravity on its surface as 3.73 m/s?. Estimate the mass of Mars. b. The Earth revolves around the Sun once a year at a distance of 1.50 x 1011 m. Estimate the mass of the Sun. c. A rocket is launched straight up from Earth's surface at 2100 m/s. By ignoring air resistance, determine the maximum height it reaches?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY