MASTERPHYS:KNIGHT'S PHYSICS ACCESS+WKB
4th Edition
ISBN: 9780135245033
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 46EAP
A long, 1.0 kg rope hangs from a support that breaks, causing the rope to fall, if the pull exceeds 40 N. A student team has built a 2.0 kg robot "mouse" that runs up and down the rope. What maximum acceleration can the robot have—both magnitude and direction—without the rope falling?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Many roller coasters have loops where carts rollon a
track that curves sharply up into the air.At the top,the
people are up side down(and usually screaming).For
safety reasons, many of these roller coasters must have a
minimum speed at the top of the loop.In the roller coaster
shown in Figure 6,the cart must have a minimum speed
of 10.0m/s at the top of the loop to make it around safely.
Assuming that the roller coaster starts from rest at the top
of the first hill and there is no friction on the roller coaster,
what is the minimum height of the first hill?
Spring Gun: A spring gun can launch a projectile with a speed of 12.21 m/s 1.8m high, and the projectile travels a distance of 12.90m before it hits the ground. The lab is on an asteroid.
What is the acceleration due to gravity on this asteroid?
a. Calculate the acceleration (in m/s2) of a skier heading down a 11.1° slope, assuming the coefficient of friction for waxed wood on wet snow.
b. Find the angle (in degrees) of the slope down which this skier could coast at a constant velocity.
(You can neglect air resistance, and you will find the equation for the acceleration of any object down an incline where fk = μkN, a = g(sin(θ) − μk cos(θ)), to be useful.)
Chapter 7 Solutions
MASTERPHYS:KNIGHT'S PHYSICS ACCESS+WKB
Ch. 7 - You find yourself in the middle of a frozen lake...Ch. 7 - How does a sprinter sprint? What is the forward...Ch. 7 - How does a rocket take off? What is the upward...Ch. 7 - How do basketball players jump straight up into...Ch. 7 - A mosquito collides head-on with a car traveling...Ch. 7 - A mosquito collides head-on with a car traveling...Ch. 7 - A small car is pushing a large truck. They are...Ch. 7 - A very smart 3-year-old child is given a wagon for...Ch. 7 - Teams red blue are having a tug-of-war. According...Ch. 7 - Will hanging a magnet in front of the iron cart in...
Ch. 7 - FIGURE Q7.11 shows two masses at rest. The string...Ch. 7 - FIGURE Q7.12 shows two masses at rest. The string...Ch. 7 - The hand in FIGURE Q7.13 is pushing on the back of...Ch. 7 - A and B in FIGURE Q7.14 are connected by a...Ch. 7 - In case a in FIGURE Q7.15, block A is accelerated...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises I through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - a. How much force does an 80 kg astronaut exert on...Ch. 7 - Block B in FIGURE EX7.7 rests on a surface for...Ch. 7 - A 1000 kg car pushes a 2000 kg truck that has a...Ch. 7 - with masses of 1 kg, 2 kg, and 3 kg are lined up...Ch. 7 - A 3000 kg meteorite falls toward the earth. What...Ch. 7 - The foot of a 55 kg sprinter is on the ground for...Ch. 7 - A steel cable lying flat on the floor drags a 20...Ch. 7 - An 80 kg spacewalking astronaut pushes off a 640...Ch. 7 - The sled dog in FIGURE EX7.14 drags sleds A and B...Ch. 7 - Two-thirds of the weight of a 1500 kg car rests on...Ch. 7 - FIGURE EX7.16 shows two 1.0 kg blocks connected by...Ch. 7 - What is the tension in the rope of Figure EX7.17?...Ch. 7 - A 2.0-m-long, 500 g rope pulls a 10 kg block of...Ch. 7 - A woman living in a third-story apartment is...Ch. 7 - Two blocks are attached to opposite ends of a...Ch. 7 - The cable cars in San Francisco are pulled along...Ch. 7 - A 2.0 kg rope hangs from the ceiling. What is the...Ch. 7 - A mobile at the art museum has a 2.0 kg steel cat...Ch. 7 - The 1.0 kg block in FIGURE EX7.24 is tied to the...Ch. 7 - The 100 kg block in FIGURE EX7.25 takes 6.0 s to...Ch. 7 - FIGURE P7.26 shows two strong magnets on opposite...Ch. 7 - FIGURE P7.27 shows a 6.0 N force pushing two...Ch. 7 - 28. A rope of length L and mass m is suspended...Ch. 7 - Prob. 29EAPCh. 7 - 30. A Federation starship (2.0 × 106 kg) uses its...Ch. 7 - Your forehead can withstand a force of about 6.0...Ch. 7 - Bob, who has a mass of 75 kg, can throw a 500 g...Ch. 7 - Two packages at UPS start sliding down the 20°...Ch. 7 - The two blocks in FIGURE P7.34 are sliding down...Ch. 7 - The coefficient of static friction is 0.60 between...Ch. 7 - The block of mass M in FIGURE P7.36 slides on a...Ch. 7 - The 10.2 kg block in FIGURE P7.37 is held in place...Ch. 7 - The coefficient of kinetic friction between the...Ch. 7 - FIGURE P7.39 shows a block of mass m resting on a...Ch. 7 - A4.0 kg box is on a frictionless 35° slope and is...Ch. 7 - Prob. 41EAPCh. 7 - The 2000 kg cable car shown in FIGURE P7.42...Ch. 7 - The century-old ascensores in Valparaiso, Chile,...Ch. 7 - A 3200 kg helicopter is flying horizontally. A 250...Ch. 7 - A house painter uses the chair-and-pulley...Ch. 7 - A long, 1.0 kg rope hangs from a support that...Ch. 7 - Prob. 47EAPCh. 7 - Prob. 48EAPCh. 7 - Find an expression for the magnitude of the...Ch. 7 - Prob. 50EAPCh. 7 - Prob. 51EAPCh. 7 - Prob. 52EAPCh. 7 - The lower block in FIGURE CP7.53 is pulled on by a...Ch. 7 - Prob. 54EAPCh. 7 - Prob. 55EAPCh. 7 - A 40-cm-diameter, 50-cm-tall, 15 kg hollow...Ch. 7 - 57. FIGURE CP7.57 shows a 200 g hamster sitting on...Ch. 7 - Prob. 58EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1. You are tasked with designing the runway on an aircraft carrier. The minimum speed for the F/A18 Hornet is 200 mph. The Hornet weighs 40,000 lbf and its twin engines provide a thrust of ~40,000 lbf combined, providing a max acceleration of 1g.a. How long must the deck be to takeoff unassisted? Give the answer in ft. b. This is most likely longer than your typical ~450 ft carrier. What acceleration must you achieve with both the engines and with a catapult system together to reach the required minimum speed by the end of the deck? c. What net force (combined engines and catapult) must be applied to the plane to get the acceleration in b? d. Do you think the plane will be able to use disk brakes on its tires to stop when landing?Use your knowledge of friction to make your argument. Also know that their coefficient of friction is ~1.arrow_forwardThe 1.0 kg block in the figure is tied to the wall with a rope. It sits on top of the 2.0 kg block. The lower block is pulled to the right with a tension force of 20 N. The coefficient of kinetic friction at both the lower and upper surfaces of the 2.0 kg block is μkμk = 0.42. What is the acceleration of the 2.0 kg block? Express your answer with the appropriate units. The anwer is NOT 3.826 1.6 3.7 7.942arrow_forwardAn 800 kg boulder is raised from a quarry 183 m deep by a long, uniform chain having a mass of 560 kg. This chain is of uniform strength, but at any point it can support a maximum tension no greater than 2.50 times its weight without breaking. What is the maximum acceleration the boulder can have and still get out of the quarry?arrow_forward
- An Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The masses have the values M(1): 27.0Kg and m(2)= 11.0Kg. Assume that the rope and pulley are massless and that there is no friction in the pulley. What is the magnitude of the masses' acceleration a? What is the magnitude of the tension T in the rope?arrow_forwardThe trap-jaw ant, found throughout tropical South America, catches its prey by very rapidly closing its mandibles around its victim. Shown is the speed of one of its mandible jaws versus time in microseconds. a. What is the maximum acceleration of the ant’s mandible? b. The mass of a trap-jaw ant’s mandible has been estimated to be about 1.3 x 10-7 kg. Estimate the maximum force exerted by one mandible.arrow_forwardDave with a mass of 60 kg goes tubing down a 20 m long hill that has an angle off the horizon of 25º. (Gravity applies) a. He gets a push from the bottom of the hill, so his initial velocity is 2 m/s. How far up the hill will he go before stopping? (there’s no friction) b. He goes back down the hill and then his friend Jill tries to pull him on the tube across a small patch of grass (μk=0.30). If she is pulling parallel to the ground at constant 5 m/s for 5 sec how much power does she expend? c. After climbing back uphill, Dave decided to roll down the hill instead. If he were to be a long cylinder with a radius of 0.1 m, what is his moment of inertia? d. After rolling without slipping down the hill, what is Dave’s final velocity at the bottom of the hill? What is his angular velocity at the bottom of the hill? Dave with a mass of 60 kg goes tubing down a 20 m long hill that has an angle off the horizon of 25º. (Gravity applies) He gets a push from the bottom of the hill, so his…arrow_forward
- A bicycle chain is wrapped around a rear sprocket (r = 0.037 m) and a front sprocket (r = 0.06 m). The chain moves with a speed of 1.2 m/s around the sprockets, while the bike moves at a constant velocity. Find the magnitude of the acceleration of a chain link that is in contact with each of the following. a.) the rear sprocket...............m/s2 b.) neither sprocket.................. m/s2 c.) the front sprocket ................ m/s2arrow_forwardA bungee jumper attains a speed of 35.6 m/s before the tension in the bungee cord begins to slow the jumper down. Once the bungee cord starts developing tension, it takes 6 sec before the tension is great enough to start pulling the jumper up. a) Assuming negligible air resistance, what is the time duration and b) distance of free fall? c) What is the average acceleration of the jumper after the bungee develops tension?arrow_forwardA roller-coaster goes over an 14 m tall hill then approaches a 25 m hill. What is the minimum velocity the roller-coaster would need when going over the 14 m hill to make it to the top of the 25 m hill?arrow_forward
- I need help with this physics question #3arrow_forwardThe coefficient of static friction between the tires of a car and a horizontal road is 0.2. If the net force on the car is the force of static friction exerted by the road, what is the maximum acceleration of the car when it is braked? The acceleration clue to gravity is 9.81 m/s^2 . Answer in units of m/s^2. What is the shortest distance in which the car can stop if it is initially traveling at 30 m/s? Answer in units of m.arrow_forwardConsider the following descriptions of the vertical motion of an object subject only to the acceleration due to gravity. Begin with the acceleration equation a(t) = ν'(t) = -g, where g = 9.8 m/s2.a. Find the velocity of the object for all relevant times.b. Find the position of the object for all relevant times.c. Find the time when the object reaches its highest point. What is the height?d. Find the time when the object strikes the ground. A payload is dropped at an elevation of 400 m from a hot-air balloonthat is descending at a rate of 10 m/s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY