EBK COSMIC PERSPECTIVE, THE
8th Edition
ISBN: 8220101465108
Author: Voit
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 38EAP
Comparing Planetary Conditions. Use the planetary data in Table 7.1 and Appendix E to answer each of the following.
a. Which column of data would you use to find out which planet has the shortest days? Do you see any notable differences in the length of a day for the different types of planets? Explain. b. Which planets should not have seasons? Why? c. Which column tells you have much a planet’s orbit deviates from a perfect circle? Based on that column, are there any planets for which you would expect the surface temperature to vary significantly over its orbit? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question 1 (Total: 30 points)
a. What is a repeat ground-track orbit?
b. Explain why repeat ground-track and Sun-synchronous orbits are typically used for Earth observation missions.
c. The constraint for a Sun-synchronous and repeat ground-track orbit is given by T = 286, 400, where I is the orbital period in seconds, m the number of days and k
the number of revolutions. Explain why this is, in fact, a constraint on the semi-major axis of the orbit.
Part B.
1. The table below shows the gravitational force between Saturn and some ring
particles that are at different distance from the planet. All of the particles have a
mass of 1 kg.
Table 1. Distance and Gravitational
Force Data
Distance of 1- Gravitational
kg Ring
Particle from
Force between
Saturn and 1-kg
ring particle (in
| 10,000 N)
2. Use the data in the table to make a
graph of the relationship between
distance and gravitational force. Label
your graph "Gravitational Force and
distance".
Center of
Saturn (in
| 1,000 km)
100
38
Hint: Put the data for distance on the
horizontal axis and the data for
gravitational force on the vertical axis.
120
26
130
22
150
17
3. Look at your graphed data, and
record in your answering sheet any
relationship you notice.
180
12
200
9.
220
8
250
280
O 5
The table below presents the semi-major axis (a) and Actual orbital period for all of the major planets in the solar system. Cube for each planet the semi-major axis in Astronomical Units. Then take the square root of this number to get the Calculated orbital period of each planet. Fill in the final row of data for each planet.
Table of Data for Kepler’s Third Law:
Table of Data for Kepler’s Third Law:
Planet aau = Semi-Major Axis (AU) Actual Planet Calculated Planet
Period (Yr) Period (Yr)
__________ ______________________ ___________ ________________
Mercury 0.39 0.24
Venus 0.72 0.62
Earth 1.00 1.00
Mars 1.52 1.88
Jupiter…
Chapter 7 Solutions
EBK COSMIC PERSPECTIVE, THE
Ch. 7 - Prob. 1VSCCh. 7 - Use the following questions to check your...Ch. 7 - Use the following questions to check your...Ch. 7 - Use the following questions to check your...Ch. 7 - What do we mean by comparative planetology? Does...Ch. 7 - What would the solar system look like to your...Ch. 7 - Briefly describe the overall layout of the solar...Ch. 7 - For each of the objects in the solar system tour...Ch. 7 - Briefly describe the patterns of motion that we...Ch. 7 - What are the basic differences between the...
Ch. 7 -
7. What do we mean by hydrogen compounds? In...Ch. 7 -
8. What are asteroids? What are comets? Describe...Ch. 7 - What kind of object in Pluto? Explain.Ch. 7 - What is the Kuiper belt? What is the Oort cloud?...Ch. 7 - Describe at least two “exceptions to the rules”...Ch. 7 - Describe and distinguish between space missions...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Why Wait? To explore a planet, we often send first...Ch. 7 - Comparative Planetology. Roles: Scribe (takes...Ch. 7 - Prob. 35EAPCh. 7 - Patterns of Motion. In one or two paragraphs,...Ch. 7 - Solar System Trends. Study the planetary data in...Ch. 7 - Comparing Planetary Conditions. Use the planetary...Ch. 7 - Be sure to show all calculations clearly and state...Ch. 7 - Be sure to show all calculations clearly and state...Ch. 7 - Be sure to show all calculations clearly and state...Ch. 7 - Be sure to show all calculations clearly and state...Ch. 7 - Be sure to show all calculations clearly and state...Ch. 7 - Be sure to show all calculations clearly and state...Ch. 7 - Be sure to show all calculations clearly and state...Ch. 7 - Prob. 46EAPCh. 7 - Prob. 47EAPCh. 7 - Prob. 48EAPCh. 7 - Mars Missions. Go to the home page for NASA’s Mars...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Using Appendix G, complete the following table that describes the characteristics of the Galilean moons of Jupiter, starting from Jupiter and moving outward in distance. Table A This system has often been described as a mini solar system. Why might this be so? If Jupiter were to represent the Sun and the Galilean moons represented planets, which moons could be considered more terrestrial in nature and which ones more like gas/ice giants? Why? (Hint: Use the values in your table to help explain your categorization.)arrow_forwardOur Solar System consist of two distinctly different types of planets. A. Describe how these planets differ in their general characteristics. B. Explain the cause of these differencesarrow_forwardUntil recently, the term "planet" had no clear-cut definition. In August of 2006, leading astronomers established new guidelines and declared that Pluto is no longer a planet. Which of the following is either false or least consistent with the new guidelines? Group of answer choices Pluto is by far the largest known object in the Kuiper belt, while Eris is the largest known object in the asteroid belt. A planet must have cleared the neighborhood around its orbit. Pluto is automatically disqualified from being a planet because its oblong orbit overlaps with Neptune's. A planet must have sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a nearly round shape. Pluto and the asteroid Ceres are both now classified as dwarf planets.arrow_forward
- QUESTION 1 Estimate The Temperature For A Planet In Other Solar System (Questions 1-3) Let us assume scientists just discovered a planet orbiting a star in an extra-solar system. The star has a surface temperature Ts = 10000 Kelvins and a radius Sr = 1x109 meters. Scientists also measured the distance (D) between the star and the planet as D = 2 AU - 3.0x1011 meters. The solar power per unit area from the star's surface (Ps) can be calculated from the star's surface temperature Ts (10000 Kelvins) by the Stefen-Boltzman law Ps=0(Ts)4, where o is Stefen-Boltzman constant (5.67 x 10-8 Watt/meter2/Kelvin4). What is the solar power per unit area from the star's surface (Ps)? O Ps ~ 2.87 x 108 Watt/meter2 O Ps ~ 5.67 x 108 Watt/meter2 O O Ps ~ 2.87 x 10 Watt/meter2 Watt/meter² Ps ~ 5.67 x 10⁹ QUESTION 2 The solar power (Ps) decreases from the star's surface to the distance at the planet. Assuming the solar power per unit area at the distance of the planet as Pp, we have Pp=Ps(Sr/D)2, where…arrow_forwardUsing high resolution adaptive optical techniques, observations of a nearby (9.5 pc) cool star of mass 0.2 solar masses indicate the presence of a small rocky exoplanet in a circular orbit with a radius of 0.01 arcseconds. Using Kepler's Laws, estimate the period of the exoplanet's orbit in days. select units Aarrow_forwardIn 1993 the Galileo spacecraft sent home an image of asteroid "243 Ida" and a tiny moon "Dactyl" orbiting the asteroid. Assume that the small moon orbits in a circle with a radius of r = 100 km from the center of the asteroid with an orbital period of T = 27 hours. a. Show and explain how we derived Kepler's 3rd law using Newton's 2nd Law, the definition for centripetal acceleration, and the equation for gravitational force. b. Use your result for Kepler's 3rd Law to determine the mass of the asteroid. c. If the asteroid has a radius of about 16 km calculate the approximate value for the acceleration due to gravity, g, on its surface. d. What velocity would you need to achieve in order to lift off and leave this asteroid? e. Use Newton's 2nd Law, the definition for centripetal acceleration, and the equation for gravitational force to determine an expression for circular orbital velocity. f. What is the orbital velocity of the small moon if we assume it is in a circular orbit?arrow_forward
- M M 1. What is the gravitational potential energy of the mass (m) in the picture? The mass is the same distance awayr from the centers of both of the other masses, and both of the other masses have the same mass, M. Give your answer in Joules. r= 400 million meters m = 7x1022 kg M = 2x1027 kg 2. What is the net gravitational force for the mass m at this location? Give your answer in Newtons.arrow_forwardPlease answer the question and subquestions completely! This is one whole question which has subquestions! According to the official Bartleby guidelines, each question can have up to two subquestions! Thank you! 1) Use Kepler's Law to find the time (in Earth’s years) for Mars to orbit the Sun if the radius of Mars’ orbit is 1.5 times the radius of Earth's orbit. 1.8 2.8 3.4 4.2 A) The mass of Mars is about 1/10 the mass of Earth. Its diameter is about 1/2 the diameter of Earth. What is the gravitational acceleration at the surface of Mars? 9.8 m/s2 2.0 m/s2 3.9 m/s2 4.9 m/s2 none of these B) A 9.0 x 10 3 kg satellite orbits the Earth at the distance of 2.56 x 10 7 m from Earth’s surface. What is its period? 1.1 x 10 4 s 4.1 x 10 4 s 5.7 x 10 4 s 1.5 x 10 5 sarrow_forwardWrite down an expression for the gravitational filed strength of a planet of radius R and density p. Please use "*" for products (e.g. B*A), "/" for ratios (e.g. B/A) and the usual "+" and "-" signs as appropriate without the quotes). For Greek letters such as p and use rho and pi. For gravitational constant, please use G. Please use the "Display response" button to check you entered the answer you expect. Display responsearrow_forward
- Answer the two questions below and write the solution. a. An astronaut is tasked to compute the gravitational acceleration of planet Z. After landing, he dropped a test object from a height of 2 meters and the time duration of the drop was 1 second. What is the gravity of planet Z in m/s^2? b. If the astronaut jumped upward with an initial velocity of 8m/s, how high is the jump? in metersarrow_forwardSuppose you're in a circular orbit around Saturn (M = 5.683 x 1026 kg) with a semi-major axis of a = 237,948 km. a. What is your orbital velocity? b. Using the "Vis-viva" equation (which can be derived from the total energy) v = GM What is the delta-V you would need to get from your current orbit, into an elliptical orbit that has an apoapsis near Titan (a = 1,221,870 km)?arrow_forwardThis is Pre-Calc! Please help and Thank you! Please click the pics for the background info Directions: Answer questions 1-8 based on the information on Table 1. Round all answers to the nearest thousandth and label with the appropriate units. 1. According to Table 1, what is the closest distance between Earth and Mars? 2. According to Table 1, what is the farthest distance between Earth and Mars? 3. Based on your answers from #2 and #3, what is the average distance between the two planets? 4. Based on your answers from #2 and #3, what is the amplitude of the distances? 5. The distance has a period of 772 days. Write a sinusoidal equation relating the number of days and distance from Earth to Mars. 6. Based on the equation from #5, what is the distance between our planets on Mr. Schutt’s birthday (day 187)? 7. Write a sinusoidal equation relating the number of days and the one-waycommunication between Earth to Mars. 8. What is the one-way communication time delay between our planets on…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY