Physics of Everyday Phenomena
9th Edition
ISBN: 9781259894008
Author: W. Thomas Griffith, Juliet Brosing Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 37CQ
A car and a small truck traveling at right angles to each other with the same speed collide and stick together. The truck’s mass is roughly twice the car’s mass. Sketch the direction of their momentum vector immediately after the collision. Explain your result. (See everyday phenomenon box 7.2.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Point charges q1 = 50 µC and q2 = −25 µC are placed 1.0 m apart. What is the magnitude of the force on a third charge q3 = 40 µC placed midway between q1 and q2? (The prefix µ =10−6 C.)
The de-excitation of a state occurs by competing emission and relaxation processes. If the relaxation mechanisms are very effective:a) the emission of radiation is largeb) the emission of radiation is smallc) the emission occurs at a shorter wavelengthd) the de-excitation occurs only by emission processes
m
C
A block of mass m slides down a ramp of height hand
collides with an identical block that is initially at rest.
The two blocks stick together and travel around a loop of
radius R without losing contact with the track. Point A is
at the top of the loop, point B is at the end of a horizon-
tal diameter, and point C is at the bottom of the loop, as
shown in the figure above. Assume that friction between
the track and blocks is negligible.
(a) The dots below represent the two connected
blocks at points A, B, and C. Draw free-body dia-
grams showing and labeling the forces (not com
ponents) exerted on the blocks at each position.
Draw the relative lengths of all vectors to reflect
the relative magnitude of the forces.
Point A
Point B
Point C
(b) For each of the following, derive an expression in
terms of m, h, R, and fundamental constants.
i. The speed of moving block at the bottom of
the ramp, just before it contacts the stationary
block
ii. The speed of the two blocks immediately…
Chapter 7 Solutions
Physics of Everyday Phenomena
Ch. 7 - Does the length of time that a force acts on an...Ch. 7 - Two forces produce equal impulses, but the second...Ch. 7 - Is it possible for a baseball to have as large a...Ch. 7 - Are impulse and force the same thing? Explain.Ch. 7 - Are impulse and momentum the same thing? Explain.Ch. 7 - If a ball bounces off a wall so that its velocity...Ch. 7 - Is there an advantage to following through when...Ch. 7 - What is the advantage of a padded dashboard...Ch. 7 - What is the advantage of an air bag in reducing...Ch. 7 - If an air bag inflates too rapidly and firmly...
Ch. 7 - If you catch a baseball or softball with your bare...Ch. 7 - Suppose you move your hand forward to meet the egg...Ch. 7 - A truck and a bicycle are moving side by side with...Ch. 7 - Is the principle of conservation of momentum...Ch. 7 - A ball is accelerated down a fixed inclined plane...Ch. 7 - Two objects collide under conditions where...Ch. 7 - Which of Newtons laws of motion are involved in...Ch. 7 - A compact car and a large truck have a head-on...Ch. 7 - A fullback collides midair and head-on with a...Ch. 7 - Two ice skaters, initially at rest, push off one...Ch. 7 - Two shotguns are identical in every respect...Ch. 7 - When a cannon rigidly mounted on a large boat is...Ch. 7 - Is it possible for a rocket to function in empty...Ch. 7 - Suppose you are standing on a surface that is so...Ch. 7 - Suppose an astronaut in outer space suddenly...Ch. 7 - Suppose that on a perfectly still day, a sailboat...Ch. 7 - A skateboarder jumps on a moving skateboard from...Ch. 7 - A railroad car collides and couples with a second...Ch. 7 - Is the collision in question 28 elastic, partially...Ch. 7 - If momentum is conserved in a collision, does this...Ch. 7 - A ball bounces off a wall with a velocity whose...Ch. 7 - A ball bounces off a wall that is rigidly attached...Ch. 7 - A cue ball strikes an 8 ball of equal mass, which...Ch. 7 - Two lumps of clay traveling through the air in...Ch. 7 - Two lumps of clay, of equal mass, are traveling...Ch. 7 - Two cars of equal mass collide at right angles to...Ch. 7 - A car and a small truck traveling at right angles...Ch. 7 - A cue ball strikes a glancing blow against a...Ch. 7 - An average force of 4800 N acts for a time...Ch. 7 - What is the momentum of a 1300-kg car traveling...Ch. 7 - A bowling ball has a mass of 7 kg and a speed of...Ch. 7 - A force of 128 N acts on a ball for 0.45 s. If the...Ch. 7 - A 0.14-kg ball traveling with a speed of 40 m/s is...Ch. 7 - A ball experiences a change in momentum of 64...Ch. 7 - A 75-kg front-seat passenger in a car moving...Ch. 7 - A ball traveling with an initial momentum of 1.7...Ch. 7 - A ball traveling with an initial momentum of 5.1...Ch. 7 - A fullback with a mass of 108 kg and a velocity of...Ch. 7 - An ice skater with a mass of 70 kg pushes off...Ch. 7 - A rifle with a mass of 3.4 kg fires a bullet with...Ch. 7 - A rocket ship at rest in space gives a short blast...Ch. 7 - A railroad car with a mass of 13,000 kg collides...Ch. 7 - A 4150-kg truck traveling with a velocity of 12...Ch. 7 - For the two vehicles in exercise E16: a. Sketch to...Ch. 7 - A car with a mass of 1600 kg traveling with a...Ch. 7 - Refer to example box 7.2 and figures 7.17 and...Ch. 7 - A fast ball thrown with a velocity of 40 m/s...Ch. 7 - A bullet is fired into a block of wood sitting on...Ch. 7 - Consider two cases in which the same ball is...Ch. 7 - A car traveling at a speed of 22 m/s...Ch. 7 - A 1600-kg car traveling due east with a speed of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The velocity of an elevator is given by the graph shown. Assume the positive direction is upward. Velocity (m/s) 3.0 2.5 2.0 1.5 1.0 0.5 0 0 5.0 10 15 20 25 Time (s) (a) Briefly describe the motion of the elevator. Justify your description with reference to the graph. (b) Assume the elevator starts from an initial position of y = 0 at t=0. Deriving any numerical values you need from the graph: i. Write an equation for the position as a function of time for the elevator from t=0 to t = 3.0 seconds. ii. Write an equation for the position as a function of time for the elevator from t = 3.0 seconds to t = 19 seconds. (c) A student of weight mg gets on the elevator and rides the elevator during the time interval shown in the graph. Consider the force of con- tact, F, between the floor and the student. How Justify your answer with reference to the graph does F compare to mg at the following times? and your equations above. i. = 1.0 s ii. = 10.0 sarrow_forwardStudents are asked to use circular motion to measure the coefficient of static friction between two materials. They have a round turntable with a surface made from one of the materials, for which they can vary the speed of rotation. They also have a small block of mass m made from the sec- ond material. A rough sketch of the apparatus is shown in the figure below. Additionally they have equipment normally found in a physics classroom. Axis m (a) Briefly describe a procedure that would allow you to use this apparatus to calculate the coefficient of static friction, u. (b) Based on your procedure, determine how to analyze the data collected to calculate the coefficient of friction. (c) One group of students collects the following data. r (m) fm (rev/s) 0.050 1.30 0.10 0.88 0.15 0.74 0.20 0.61 0.25 0.58 i. Use the empty spaces in the table as needed to calculate quantities that would allow you to use the slope of a line graph to calculate the coefficient of friction, providing labels with…arrow_forwardPART Aarrow_forward
- answer both questionarrow_forwardOnly part A.) of the questionarrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forward
- In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, −3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardOnly Part C.) is necessaryarrow_forwardOnly Part B.) is necessaryarrow_forward
- A (3.60 m) 30.0°- 70.0° x B (2.40 m)arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardfine the magnitude of the vector product express in sq meters what direction is the vector product in -z or +zarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY