Physics of Everyday Phenomena
9th Edition
ISBN: 9781259894008
Author: W. Thomas Griffith, Juliet Brosing Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 25CQ
Suppose an astronaut in outer space suddenly discovers that the tether connecting her to the space shuttle is cut and she is slowly drifting away from the shuttle. Assuming that she is wearing a tool belt holding several wrenches, how can she move herself back toward the shuttle? Explain.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Walking without slipping requires a static friction force between your feet (or footwear) and the floor. The force on your foot as you push off the floor is forward while the force exerted by your foot on the floor is backward. But what about your other foot, the one moved during a stride? What is the direction of the force on that foot as it comes into contact with the floor? Explain.
When you are in a car's passenger seat (on the right –US car), and the driver turns left, you are thrown against the car door. Your little nephew says there is a force pushing you out of the car. Explain what is really happening, using good physics.
When an object falls freely under the influence of gravity there is a net force mg exerted on it by the Earth. Yet by Newton’s third law the object exerts an equal and opposite force on the Earth. Does the Earth move? Explain.
Chapter 7 Solutions
Physics of Everyday Phenomena
Ch. 7 - Does the length of time that a force acts on an...Ch. 7 - Two forces produce equal impulses, but the second...Ch. 7 - Is it possible for a baseball to have as large a...Ch. 7 - Are impulse and force the same thing? Explain.Ch. 7 - Are impulse and momentum the same thing? Explain.Ch. 7 - If a ball bounces off a wall so that its velocity...Ch. 7 - Is there an advantage to following through when...Ch. 7 - What is the advantage of a padded dashboard...Ch. 7 - What is the advantage of an air bag in reducing...Ch. 7 - If an air bag inflates too rapidly and firmly...
Ch. 7 - If you catch a baseball or softball with your bare...Ch. 7 - Suppose you move your hand forward to meet the egg...Ch. 7 - A truck and a bicycle are moving side by side with...Ch. 7 - Is the principle of conservation of momentum...Ch. 7 - A ball is accelerated down a fixed inclined plane...Ch. 7 - Two objects collide under conditions where...Ch. 7 - Which of Newtons laws of motion are involved in...Ch. 7 - A compact car and a large truck have a head-on...Ch. 7 - A fullback collides midair and head-on with a...Ch. 7 - Two ice skaters, initially at rest, push off one...Ch. 7 - Two shotguns are identical in every respect...Ch. 7 - When a cannon rigidly mounted on a large boat is...Ch. 7 - Is it possible for a rocket to function in empty...Ch. 7 - Suppose you are standing on a surface that is so...Ch. 7 - Suppose an astronaut in outer space suddenly...Ch. 7 - Suppose that on a perfectly still day, a sailboat...Ch. 7 - A skateboarder jumps on a moving skateboard from...Ch. 7 - A railroad car collides and couples with a second...Ch. 7 - Is the collision in question 28 elastic, partially...Ch. 7 - If momentum is conserved in a collision, does this...Ch. 7 - A ball bounces off a wall with a velocity whose...Ch. 7 - A ball bounces off a wall that is rigidly attached...Ch. 7 - A cue ball strikes an 8 ball of equal mass, which...Ch. 7 - Two lumps of clay traveling through the air in...Ch. 7 - Two lumps of clay, of equal mass, are traveling...Ch. 7 - Two cars of equal mass collide at right angles to...Ch. 7 - A car and a small truck traveling at right angles...Ch. 7 - A cue ball strikes a glancing blow against a...Ch. 7 - An average force of 4800 N acts for a time...Ch. 7 - What is the momentum of a 1300-kg car traveling...Ch. 7 - A bowling ball has a mass of 7 kg and a speed of...Ch. 7 - A force of 128 N acts on a ball for 0.45 s. If the...Ch. 7 - A 0.14-kg ball traveling with a speed of 40 m/s is...Ch. 7 - A ball experiences a change in momentum of 64...Ch. 7 - A 75-kg front-seat passenger in a car moving...Ch. 7 - A ball traveling with an initial momentum of 1.7...Ch. 7 - A ball traveling with an initial momentum of 5.1...Ch. 7 - A fullback with a mass of 108 kg and a velocity of...Ch. 7 - An ice skater with a mass of 70 kg pushes off...Ch. 7 - A rifle with a mass of 3.4 kg fires a bullet with...Ch. 7 - A rocket ship at rest in space gives a short blast...Ch. 7 - A railroad car with a mass of 13,000 kg collides...Ch. 7 - A 4150-kg truck traveling with a velocity of 12...Ch. 7 - For the two vehicles in exercise E16: a. Sketch to...Ch. 7 - A car with a mass of 1600 kg traveling with a...Ch. 7 - Refer to example box 7.2 and figures 7.17 and...Ch. 7 - A fast ball thrown with a velocity of 40 m/s...Ch. 7 - A bullet is fired into a block of wood sitting on...Ch. 7 - Consider two cases in which the same ball is...Ch. 7 - A car traveling at a speed of 22 m/s...Ch. 7 - A 1600-kg car traveling due east with a speed of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The starship Enterprise has its tractor beam locked onto some valuable debris and is trying to pull it toward the ship. A Klingon battle cruiser and a Romulan warbird are also trying to recover the item by pulling the debris with their tractor beams as shown in Figure P5.25. a. Given the following magnitudes of the tractor beam forces, find the net force experienced by the debris: FEnt = 7.59 106 N, FRom = 2.53 106 N, and FKling = 8.97 105 N. b. If the debris has a mass of 2549 kg, what is the net acceleration of the debris? FIGURE P5.25arrow_forwardA block of ice (m = 15.0 kg) with an attached rope is at rest on a frictionless surface. You pull the block with a horizontal force of 95.0 N for 1.54 s. a. Determine the magnitude of each force acting on the block of ice while you are pulling. b. With what speed is the ice moving after you are finished pulling? Repeat Problem 71, but this time you pull on the block at an angle of 20.0.arrow_forwardAn aluminum block of mass m1 = 2.00 kg and a copper block of mass m2 = 6.00 kg are connected by a light string over a frictionless pulley. They sit on a steel surface as shown in Figure P5.46, where = 30.0. (a) When they are released from rest, will they start to move? If they do, determine (b) their acceleration and (c) the tension in the string. If they do not move, determine (d) the sum of the magnitudes of the forces of friction acting on the blocks. Figure P5.46arrow_forward
- In order to get an object moving, you must push harder on it than it pushes back on you. True or False? Please explain.arrow_forwardCan you give a practical example of how a body can still accelerate even without changing its speed? If you can, give me an example and an explanation of itarrow_forwardNakyum and Alex are on a trip to Bohol Philippines. Suddenly the car runs out of fuel then stops (Picture A). Alex volunteers to push the car to the side of the road. He pushes it hard, but he can't move the car. A bystander helps him then the car accelerates (Picture B). Questions are on the photo attached:arrow_forward
- A vertical cable supports two vehicles, a 1,207 kg convertible and a 1,461 kg truck, with the convertible directly above the truck. The cable is attached to a crane, which lifts the vehicles with an acceleration 1.05 m/s2. At one moment the convertible is moving at a speed of 3.40 m/s. Assume the cable does not stretch. (a) How do the velocity and acceleration of the two vehicles compare? 1. At any instant the truck has a lower velocity compared to that of the convertible and at all instants they have the same acceleration. 2. At any instant the truck has a higher velocity compared to that of the convertible and at all instants they have the same acceleration. 3. At any instant they have the same velocity and at all instants they have the same acceleration. (b) What is the tension, Tlower, (in N) in the cable between the convertible and the truck? (c) What is the tension, Tupper, (in N) in the cable above the convertible?arrow_forwardA 80 kg woman on roller skates pushes a 30 kg girl, also on roller skates, with a force of 100 N. The magnitude of the force exerted by the girl on the woman is O 200 N O 100 N O 50 N O 40 N O 38 N zeroarrow_forwardAlice is pushing a 20 kg cart to the left, Bob is pushing back to the right. The cart is moving at a constant 1.0 m/s to the left. Assuming friction is zero, who is pushing harder on the cart?arrow_forward
- Three identical 2.0 kg blocks are stacked on top of one another, three blocks tall. They sit on the floor of a moving express elevator (it is accelerating down), and nothing else is touching them. If the normal force of the floor on the bottom most block is of magnitude 54 N, what is the magnitude of the force on the top block due to the middle block? a) 16 N b) 17 N c) 18 N d) 19 N e) 20 Narrow_forwardThe 4-Mg bus A is traveling to the right at 30 m/s. Meanwhile a 1-Mg car B is traveling at 20 m/s to the left. If vehicles crash and become entangled, determine the distance the vehicles will slide before they stop. The coefficient of kinetic friction between vehicles' tire and the road is μι-0.7. VA = 30 m/s Vg = 20 m/s Barrow_forwardIn the movie The Rocketeer, a teenager discovers a jet-powered backpack in an old barn. The backpack allows him to fly at incredible speeds. In one scene, however, he uses the backpack to rapidly accelerate an old pickup truck that is being chased by “bad guys.” He does this by bracing his arms against the cab of the pickup and firing the backpack, giving the truck the acceleration of a drag racer. Is the physics of this scene “Good,”“Bad,” or “Ugly?” Draw and Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY