A fast ball thrown with a velocity of 40 m/s (approximately 90 MPH) is struck by a baseball bat, and a line drive comes back toward the pitcher with a velocity of 65 m/s. The ball is in contact with the bat for a time of just 0.005 s. The baseball has a mass of 142 g (0.142 kg).
- a. What is the change in momentum of the baseball during this process?
- b. Is the change in momentum greater than the final momentum? Explain.
- c. What is the magnitude of the impulse required to produce this change in momentum?
- d. What is the magnitude of the average force that acts on the baseball to produce this impulse?
(a)
The change in momentum of the baseball during the process.
Answer to Problem 1SP
The change in momentum of the baseball during the process is
Explanation of Solution
Given info: The velocity of the ball before coming in contact with the bat is
Take initial direction of motion of the baseball to be positive.
Write the expression to find the initial momentum of the baseball.
Here,
Substitute
Write the expression to find the final momentum of the baseball.
Substitute
Write the expression for change in momentum of the baseball.
Here,
Substitute
Conclusion:
Therefore, the change in momentum of the baseball during the process is
(b)
Whether the change in momentum is greater than the final momentum.
Answer to Problem 1SP
Yes, the change in momentum is greater than the final momentum.
Explanation of Solution
The change in momentum is found to be
Conclusion:
Therefore, the change in momentum is greater than the final momentum.
(c)
The magnitude of impulse required to make the change in momentum.
Answer to Problem 1SP
The magnitude of impulse required to make the change in momentum is
Explanation of Solution
Given info: The change in momentum experienced by the baseball is
Write the expression for relation connecting the impulse and change in momentum of the baseball.
Here,
Substitute
Conclusion:
Therefore, the magnitude of impulse required to make the change in momentum is
(d)
The magnitude of average force that acts on the baseball to produce the impulse.
Answer to Problem 1SP
The magnitude of average force that acts on the baseball to produce the impulse is
Explanation of Solution
Write the expression for the impulse associated with the ball.
Here,
Substitute
Conclusion:
Therefore, the magnitude of average force that acts on the baseball to produce the impulse is
Want to see more full solutions like this?
Chapter 7 Solutions
Physics of Everyday Phenomena
- 3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forwardNo chatgpt pls will upvotearrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: Incident ray at A Note: This diagram is not to scale. a Air (n = 1.00) Water (n = 1.34) 1) Determine the angle of refraction of the ray of light in the water. Barrow_forward
- Hi can u please solvearrow_forward6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from diffraction limited, with a spot size of more than 100 microns. Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert one extra line at the top of the merit function. Assign the…arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forward
- Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardGood explanation it sure experts solve it.arrow_forward
- No chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning