
Concept explainers
(a)
Interpretation:
The empirical formula the compound with percentage composition of
Concept Introduction:
Empirical Formula:
The empirical formula of a compound is the simplest whole number ratio of each type of atom in a compound. It can be the same as the compound’s molecular formula but not always. An empirical formula can be calculated from information about the mass of each element in a compound or from the percentage composition.
The steps for determining the empirical formula of a compound as follows:
- Obtain the mass of each element present in grams.
- Determine the number of moles of each atom present.
- Divide the number of moles of each element by the smallest number of moles.
- Convert the numbers to whole numbers. The set of whole numbers are the subscripts in the empirical formula.
(a)

Answer to Problem 36PE
The empirical formula of the compound is
Explanation of Solution
Given,
The percentage composition of copper is
The percentage composition of chlorine is
The
The atomic mass of chlorine is
Assuming that
The grams of each element has to be converted to moles as,
The moles of copper
The moles of chlorine
The empirical formula can be calculated as,
The number of moles can be converted to moles to whole numbers by dividing by the small number.
The empirical formula of the compound is
(b)
Interpretation:
The empirical formula the compound with percentage composition of
Concept Introduction:
Refer to part (a).
(b)

Answer to Problem 36PE
The empirical formula of the compound is
Explanation of Solution
Given,
The percentage composition of copper is
The percentage composition of chlorine is
The atomic mass of copper is
The atomic mass of chlorine is
Assuming that
The grams of each element has to be converted to moles as,
The moles of copper
The moles of chlorine
The empirical formula can be calculated as,
The number of moles can be converted to moles to whole numbers by dividing by the small number.
The empirical formula of the compound is
(c)
Interpretation:
The empirical formula the compound with percentage composition of
Concept Introduction:
Refer to part (a).
(c)

Answer to Problem 36PE
The empirical formula of the compound is
Explanation of Solution
Given,
The percentage composition of chromium is
The percentage composition of sulfur is
The atomic mass of chromium is
The atomic mass of sulfur is
Assuming that
The grams of each element has to be converted to moles as,
The moles of chromium
The moles of sulfur
The empirical formula can be calculated as,
The number of moles can be converted to moles to whole numbers by dividing by the small number.
Since the value if fractional multiply both the values by two. The empirical formula of the compound is
(d)
Interpretation:
The empirical formula the compound with percentage composition of
Concept Introduction:
Refer to part (a).
(d)

Answer to Problem 36PE
The empirical formula of the compound is
Explanation of Solution
Given,
The percentage composition of potassium is
The percentage composition of phosphorus is
The percentage composition of oxygen is
The atomic mass of potassium is
The atomic mass of phosphorus is
The atomic mass of oxygen is
Assuming that
The grams of each element has to be converted to moles as,
The moles of potassium
The moles of phosphorus
The moles of oxygen
The empirical formula can be calculated as,
The number of moles can be converted to moles to whole numbers by dividing by the small number.
The empirical formula of the compound is
(e)
Interpretation:
The empirical formula the compound with percentage composition of
Concept Introduction:
Refer to part (a).
(e)

Answer to Problem 36PE
The empirical formula of the compound is
Explanation of Solution
Given,
The percentage composition of barium is
The percentage composition of chromium is
The percentage composition of oxygen is
The atomic mass of barium is
The atomic mass of chromium is
The atomic mass of oxygen is
Assuming that
The grams of each element has to be converted to moles as,
The moles of barium
The moles of chromium
The moles of oxygen
The empirical formula can be calculated as,
The number of moles can be converted to moles to whole numbers by dividing by the small number.
The empirical formula of the compound is
(f)
Interpretation:
The empirical formula the compound with percentage composition of
Concept Introduction:
Refer to part (a).
(f)

Answer to Problem 36PE
The empirical formula of the compound is
Explanation of Solution
Given,
The percentage composition of bromine is
The percentage composition of phosphorus is
The percentage composition of chlorine is
The atomic mass of bromine is
The atomic mass of chlorine is
The atomic mass of phosphorus is
Assuming that
The grams of each element has to be converted to moles as,
The moles of phosphorus
The moles of bromine
The moles of chlorine
The empirical formula can be calculated as,
The number of moles can be converted to moles to whole numbers by dividing by the small number.
The empirical formula of the compound is
Want to see more full solutions like this?
Chapter 7 Solutions
EBK FOUNDATIONS OF COLLEGE CHEMISTRY
- 2. Predict the product(s) that forms and explain why it forms. Assume that any necessary catalytic acid is present. .OH HO H₂N OHarrow_forwardconsider the rate of the reaction below to be r. Whats the rate after each reaction? Br + NaCN CN + NaBr a. Double the concentration of alkyl bromide b. Halve the concentration of the electrophile & triple concentration of cyanide c. Halve the concentration of alkyl chloridearrow_forwardPredict the organic reactant that is involved in the reaction below, and draw the skeletal ("line") structures of the missing organic reactant. Please include all steps & drawings & explanations.arrow_forward
- What are the missing reagents for the spots labeled 1 and 3? Please give a detailed explanation and include the drawings and show how the synthesis proceeds with the reagents.arrow_forwardWhat is the organic molecule X of the following acetal hydrolysis? Please draw a skeletal line structure and include a detailed explanation and drawing of how the mechanism proceeds. Please include any relevant information that is needed to understand the process of acetal hydrolysis.arrow_forwardWhat are is the organic molecule X and product Y of the following acetal hydrolysis? Please draw a skeletal line structure and include a detailed explanation and drawing of how the mechanism proceeds. Please include any relevant information that is needed to understand the process of acetal hydrolysis.arrow_forward
- At 300 K, in the decomposition reaction of a reactant R into products, several measurements of the concentration of R over time have been made (see table). Without using graphs, calculate the order of the reaction. t/s [R]/(mol L-1) 0 0,5 171 0,16 720 0,05 1400 0,027arrow_forwardPredict the organic products that form in the reaction below, and draw the skeletal ("line") structures of the missing organic products. Please include all steps & drawings & explanations.arrow_forwardWhat are the missing reagents for the spots labeled 1 and 3? Please give a detailed explanation and include the drawings and show how the synthesis proceeds with the reagents.arrow_forward
- What are the products of the following acetal hydrolysis? Please draw a skeletal line structure and include a detailed explanation and drawing of how the mechanism proceeds. Please include any relevant information that is needed to understand the process of acetal hydrolysis.arrow_forwardWhat would happen if you added the HCI to the Grignard reagent before adding benzophenone? Draw a reaction mechanism to support your answer.arrow_forwardAt 300 K, in the decomposition reaction of a reactant R into products, several measurements of the concentration of R over time have been made (see table). Calculate the order of the reaction. t/s [R]/ (mol L-1) 0 0,5 171 0,16 720 0,05 1400 0,027arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





