
Concept explainers
Making use of the passive sign convention, determine the current flowing through a 100 pF capacitor for t ≥ 0 if its voltage vC(t) is given by (a) 5 V; (b) 10e−t V; (c) 2 sin 0.01t V; (d) −5 + 2 sin 0.01t V.
(a)

Find the current flowing through a
Answer to Problem 1E
The current flowing through the capacitor is
Explanation of Solution
Given Data:
The voltage across the capacitor is
The capacitance of the capacitor is
Formula used:
The expression for the current in the capacitor is given as follows,
Here,
Calculation:
Substitute
Conclusion:
Thus, the current flowing through the capacitor is
(b)

The current flowing through a
Answer to Problem 1E
The current flowing through the capacitor is
Explanation of Solution
Given Data:
The voltage across the capacitor is
The capacitance of the capacitor is
Calculation:
Substitute
Conclusion:
Thus, the current flowing through the capacitor is
(c)

The current flowing through a
Answer to Problem 1E
The current flowing through the capacitor is
Explanation of Solution
Given Data:
The voltage across the capacitor is
The capacitance of the capacitor is
Calculation:
Substitute
Conclusion:
Thus, the current flowing through the capacitor is
(d)

The current flowing through a
Answer to Problem 1E
The current flowing through the capacitor is
Explanation of Solution
Given Data:
The voltage across the capacitor is
The capacitance of the capacitor is
Calculation:
Substitute
Conclusion:
Thus, the current flowing through the capacitor is
Want to see more full solutions like this?
Chapter 7 Solutions
Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
Additional Engineering Textbook Solutions
Starting Out with Python (4th Edition)
SURVEY OF OPERATING SYSTEMS
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Mechanics of Materials (10th Edition)
Java: An Introduction to Problem Solving and Programming (8th Edition)
- Q1. The three-phase full-wave converter in Figure shown is operated from a three phase Y-connected supply. Sketch the output voltages appeared at the load for firing angle 15°. I need Sketch an Ven จ T1 Q Yi₁ = I₂ a ia = is T₁ T3 T₂ Vbn b ib Load Highly inductive load ▲ T6 T₂ iT4 On T5, T6 T6, T₁ T2, T3 T3, T4 T4, T5 T5, T6 ཅ 0 T₁ الاسم T₁ Is wtarrow_forwardQ4. For the control system is shown in Figure 2, by using second method of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and make tuning for this parameters to get accepting response for the هندسة الكم following system, then compare your results for all types controllers? R(S) K C(s) S3+4S² +11S Figure (2)arrow_forwardQ1. Consider the unity feedback control system whose open-loop transfer function is: G(s): = 40(S+2) s(s+3)(s+1)(s + 10) ELECTRIC Ziegler-Nichols, By using second method of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and make tuning for this parameters to get accepting response for the following system, then comp controllers? PARTME then compare your results for all types GINEARIarrow_forward
- Q2. Consider the control system whose open-loop transfer function is: G(s) = K قسم s (s2 +4.8s + 12.6) By using second method of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and make tuning for this parameters to get accepting response for the following system, then compare your results for all types controllers?arrow_forwardQ3. For the control system is shown in Figure 1, by using second method of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and make tuning for this parameters to get accepting response for the following system, then compare your results for all types controllers? R(s) + C(s) 1 GES s(s+3)(s+6) PID controller Figure (1) INarrow_forwardUse Newton-Raphson method to solve the system x³+y-1=0 4 y³-x+1=0 with the starting value (xo,yo) = (1,0). Take n=4.arrow_forward
- Use Newton-Raphson method to solve the system 3x²y - 10x+7=0 y²-5y+4=0 With the starting value (xo, yo) = (0.5, 0.5). Take n = 1arrow_forwardUse Newton-Raphson method to solve the system x²-2xy+0.5= 0 x²+4y² 40 - with the starting value (xo, yo) = (2, 0.25) and two iteration number.arrow_forwardProblem 7 [2.5 pts] The response of an LTI system to u[n+2] appears to be the following sequence. -3-2-101234 Do we have enough information to determine the impulse response of this system? If so, derive it and plot it. If not, explain why.arrow_forward
- Problem 4 5' Consider the systems S₁(x[n]) = x[n]+5[n²−1] and S2(x[n]) = x[n(n−2)]. a [2 pts] Plot the impulse responses of S₁ and S2, respectively. b [2.5 pts] Determine whether S₁ and S2 are causal. Justify your answer in details. Warning: There will be no credit for just 'yes' or 'no' answer.arrow_forward22: Line charges PL 2π nC/m are located at xy-plane as shown in Figure-1, find the electric field intensity (E) at (0, 0, 2)? 2arrow_forward11.4 Determine Vout in the circuit shown in Fig. P11.4. through any methodarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





