Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 18EAP
A 2.0-m-long, 500 g rope pulls a 10 kg block of ice across a horizontal, frictionless surface. The block accelerates at 2.0 m/s2. How much force pulls forward on (a) the ice, (b) the rope? Assume that the rope is perfectly horizontal.
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule01:52
Students have asked these similar questions
A fire helicopter carries a 620-kg bucket of water at the end of a 20.0-m-long cable. Flying back from a fire at a constant speed of 40.0 m/s, the cable makes an angle of 40.0° with respect to the vertical. Determine the force exerted by air resistance on the bucket.
A waitress shoves a ketchup bottle with mass 0.45 kg to her right along a smooth, level lunch counter. The bottle leaves her hand moving at 2.8 m/s, then slows down as it slides because of a constant horizontal friction force exerted on it by the countertop. It slides for 1.0 m before coming to rest. What is the magnitude of the friction force acting on the bottle?
A steel cable lying flat on the floor drags a 30 kg block across a horizontal, frictionless floor. A 200 N force applied to the cable causes the block to reach a speed of 6 m/s in a distance of 3 m. Determine the mass of the cable.
Chapter 7 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 7 - You find yourself in the middle of a frozen lake...Ch. 7 - How does a sprinter sprint? What is the forward...Ch. 7 - How does a rocket take off? What is the upward...Ch. 7 - How do basketball players jump straight up into...Ch. 7 - A mosquito collides head-on with a car traveling...Ch. 7 - A mosquito collides head-on with a car traveling...Ch. 7 - A small car is pushing a large truck. They are...Ch. 7 - A very smart 3-year-old child is given a wagon for...Ch. 7 - Teams red blue are having a tug-of-war. According...Ch. 7 - Will hanging a magnet in front of the iron cart in...
Ch. 7 - FIGURE Q7.11 shows two masses at rest. The string...Ch. 7 - FIGURE Q7.12 shows two masses at rest. The string...Ch. 7 - The hand in FIGURE Q7.13 is pushing on the back of...Ch. 7 - A and B in FIGURE Q7.14 are connected by a...Ch. 7 - In case a in FIGURE Q7.15, block A is accelerated...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises I through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - a. How much force does an 80 kg astronaut exert on...Ch. 7 - Block B in FIGURE EX7.7 rests on a surface for...Ch. 7 - A 1000 kg car pushes a 2000 kg truck that has a...Ch. 7 - with masses of 1 kg, 2 kg, and 3 kg are lined up...Ch. 7 - A 3000 kg meteorite falls toward the earth. What...Ch. 7 - The foot of a 55 kg sprinter is on the ground for...Ch. 7 - A steel cable lying flat on the floor drags a 20...Ch. 7 - An 80 kg spacewalking astronaut pushes off a 640...Ch. 7 - The sled dog in FIGURE EX7.14 drags sleds A and B...Ch. 7 - Two-thirds of the weight of a 1500 kg car rests on...Ch. 7 - FIGURE EX7.16 shows two 1.0 kg blocks connected by...Ch. 7 - What is the tension in the rope of Figure EX7.17?...Ch. 7 - A 2.0-m-long, 500 g rope pulls a 10 kg block of...Ch. 7 - A woman living in a third-story apartment is...Ch. 7 - Two blocks are attached to opposite ends of a...Ch. 7 - The cable cars in San Francisco are pulled along...Ch. 7 - A 2.0 kg rope hangs from the ceiling. What is the...Ch. 7 - A mobile at the art museum has a 2.0 kg steel cat...Ch. 7 - The 1.0 kg block in FIGURE EX7.24 is tied to the...Ch. 7 - The 100 kg block in FIGURE EX7.25 takes 6.0 s to...Ch. 7 - FIGURE P7.26 shows two strong magnets on opposite...Ch. 7 - FIGURE P7.27 shows a 6.0 N force pushing two...Ch. 7 - 28. A rope of length L and mass m is suspended...Ch. 7 - Prob. 29EAPCh. 7 - 30. A Federation starship (2.0 × 106 kg) uses its...Ch. 7 - Your forehead can withstand a force of about 6.0...Ch. 7 - Bob, who has a mass of 75 kg, can throw a 500 g...Ch. 7 - Two packages at UPS start sliding down the 20°...Ch. 7 - The two blocks in FIGURE P7.34 are sliding down...Ch. 7 - The coefficient of static friction is 0.60 between...Ch. 7 - The block of mass M in FIGURE P7.36 slides on a...Ch. 7 - The 10.2 kg block in FIGURE P7.37 is held in place...Ch. 7 - The coefficient of kinetic friction between the...Ch. 7 - FIGURE P7.39 shows a block of mass m resting on a...Ch. 7 - A4.0 kg box is on a frictionless 35° slope and is...Ch. 7 - Prob. 41EAPCh. 7 - The 2000 kg cable car shown in FIGURE P7.42...Ch. 7 - The century-old ascensores in Valparaiso, Chile,...Ch. 7 - A 3200 kg helicopter is flying horizontally. A 250...Ch. 7 - A house painter uses the chair-and-pulley...Ch. 7 - A long, 1.0 kg rope hangs from a support that...Ch. 7 - Prob. 47EAPCh. 7 - Prob. 48EAPCh. 7 - Find an expression for the magnitude of the...Ch. 7 - Prob. 50EAPCh. 7 - Prob. 51EAPCh. 7 - Prob. 52EAPCh. 7 - The lower block in FIGURE CP7.53 is pulled on by a...Ch. 7 - Prob. 54EAPCh. 7 - Prob. 55EAPCh. 7 - A 40-cm-diameter, 50-cm-tall, 15 kg hollow...Ch. 7 - 57. FIGURE CP7.57 shows a 200 g hamster sitting on...Ch. 7 - Prob. 58EAP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
Where are skeletal cartilages located?
Human Anatomy & Physiology (2nd Edition)
In one public health study, replica plating was used to screen 131 fecal samples for gram-negative bacteria tha...
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
4. Two of these organ system bear the major responsibility for ensuring homeostasis of the internal environment...
Human Anatomy & Physiology (Marieb, Human Anatomy & Physiology) Standalone Book
___________________________________________________
65. Determine the molecular geometry of each molecule.
(a) ...
Introductory Chemistry (6th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of the following did not occur d...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You push an object, initially at rest, across a frictionless floor with a constant force for a time interval t, resulting in a final speed of v for the object. You then repeat the experiment, but with a force that is twice as large. What time interval is now required to reach the same final speed v? (a) 4 t (b) 2 t (c) t (d) t/2 (e) t/4arrow_forwardAn object of mass m = 1.00 kg is observed to have an acceleration a with a magnitude of 10.0 m/s2 in a direction 60.0 east of north. Figure P4.29 shows a view of the object from above. The force F2 acting on the object has a magnitude of 5.00 N and is directed north. Determine the magnitude and direction of the one other horizontal force F1 acting on the object. Figure P4.29arrow_forwardA block of ice (m = 15.0 kg) with an attached rope is at rest on a frictionless surface. You pull the block with a horizontal force of 95.0 N for 1.54 s. a. Determine the magnitude of each force acting on the block of ice while you are pulling. b. With what speed is the ice moving after you are finished pulling? Repeat Problem 71, but this time you pull on the block at an angle of 20.0.arrow_forward
- (a) Find an equation to determine the magnitude of the net force required to stop a car of mass m, given that the initial speed of the car is v0 and the stopping distance is x . (b) Find the magnitude of the net force if the mass of the car is 1050 kg, the initial speed is 40.0 km/h, and the stopping distance is 25.0 m.arrow_forwardA fire helicopter carries a 690-kg bucket of water at the end of a 20,0-mg long cable. Flying back from a fire at constant speed of 40.0 m/s, the cable makes an angle of 38.0 degrees with respect to the vertical. Determine the force exerted by air resistance on the bucket?arrow_forwardThe speed of a 4.0-N hockey puck, sliding across a level ice surface, decreases at the rate of 0.61 m/s2. The coefficient of kinetic friction between the puck and ice is: O none of the given choices O 1.2 O 0.062 O 0.62 O 0.41arrow_forward
- You are at the grocery store pushing on a shopping cart. The mass of the cart including all the delicious food you will buy is 22.0 kg. The coefficient of friction between the floor and the wheels of the shopping cart is 0.22. In order to accelerate the cart to 2.20 m/s from rest in 2.20 m, what force must you apply to the cart?arrow_forwardA 50.0-kg (including the passenger) sled is subject to a net force of 20.0 N pushing in the direction of the sled’s motion as it is moving over a horizontal surface for a distance of 11.0 m after having started from rest. At this point the sled is released as it starts down a 10.0° incline. However, the snow is not very deep, and the sled stops after having moved an additional 35.0 m. What is the work done by friction while the sled is on the incline?arrow_forward#4arrow_forward
- A 7780-kg car is travelling at 25.8 m/s when the driver decides to exit the freeway by going up a ramp. After coasting 362 m along the exit ramp, the car's speed is 13.5 m/s, and it is h = 11.3 m above the freeway. What is the magnitude of the average drag force Fdrag exerted on the car? Fdrag = Narrow_forwardA 200 g hockey puck is launched up a metal ramp that is inclined at a 30° angle. The coefficients of static and kinetic friction between the hockey puck and the metal ramp are us 0.40 and uk = 0.30, respectively. The puck's initial speed is 4.9 m/s. What speed does it have when it slides back down to its starting point? 2.8 m/s 4.9 m/s 4.2 m/s 3.5 m/sarrow_forwardOption #2: A roller coaster car is at the top of a huge hill and is at rest briefly. Then it rolls down the track and accelerates as its passengers scream. By the time it is 15.2 meters down the track, it is moving at 2.85 m/s. If the hill has a slope of 10.00°, what is the coefficient of friction between the car and the track? Assume any mass for the roller coaster car.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License