Physics
7th Edition
ISBN: 9780321929013
Author: Douglas C. Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 11Q
The speed of a tennis ball on the return of a serve can be just as fast as the serve, even though the racket isn't swung very fast. How can this be?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A billiard player took his shot on a tournament game moving the cue ball at a speed of 3.5 m/s and makes a glancing collision with the target ball. After collision, the cue ball moves off at an angle of theta = 37.0 deg relative to the original direction of its motion and the target ball deflects at an angle of phi to the same axis but opposite direction.
(I)Calculate for the the angle phi
(II)Find the final speeds of the two billiard balls
The momentum of an isolated system is conserved
O none of the given choices
O only in elastic collisions
O only if the objects have the same velocity
O in both elastic and inelastic collisions
O only in inelastic collisions
A 12-kg hammer strikes a nail at a velocity of 7.5 m/s and comes to rest in a time interval of 8.0 ms. What is the impulsive given to the nail?
Chapter 7 Solutions
Physics
Ch. 7 - A railroad car loaded with rocks coasts on a level...Ch. 7 - 2. Which answer would you choose if the rocks fall...Ch. 7 - Prob. 1QCh. 7 - Prob. 2QCh. 7 - 3. When a person jumps from a tree to the ground,...Ch. 7 - Prob. 4QCh. 7 - Prob. 5QCh. 7 - Prob. 6QCh. 7 - According to Eq. 7-4, the longer the impact time...Ch. 7 - If a falling ball were to make a perfectly elastic...
Ch. 7 - A boy stands on the back of a rowboat and dives...Ch. 7 - It is said that in ancient times a rich man with a...Ch. 7 - The speed of a tennis ball on the return of a...Ch. 7 - Is it possible for an object to receive a larger...Ch. 7 - In a collision between two cars, which would you...Ch. 7 - A very elastic “superball” is dropped from a...Ch. 7 - Prob. 15QCh. 7 - Prob. 16QCh. 7 - Prob. 17QCh. 7 - Prob. 18QCh. 7 - Prob. 19QCh. 7 - Prob. 20QCh. 7 - Prob. 21QCh. 7 - Prob. 22QCh. 7 - Prob. 23QCh. 7 - Bob and Jim decide to play tug-of-war on a...Ch. 7 - 25. In one type of nuclear radioactive decay, an...Ch. 7 - Prob. 26QCh. 7 - Prob. 27QCh. 7 - Prob. 28QCh. 7 - Prob. 1MCQCh. 7 - Prob. 2MCQCh. 7 - Prob. 3MCQCh. 7 - Prob. 4MCQCh. 7 - Prob. 5MCQCh. 7 - Prob. 6MCQCh. 7 - Prob. 7MCQCh. 7 - Prob. 8MCQCh. 7 - Prob. 9MCQCh. 7 - 10. Choose the best answer in the previous...Ch. 7 - 11. A railroad tank car contains milk and rolls at...Ch. 7 - Prob. 12MCQCh. 7 - 1. (I) What is the magnitude of the momentum of a...Ch. 7 - A constant friction force of 25 N acts on a 65-kg...Ch. 7 - Prob. 3PCh. 7 - Prob. 4PCh. 7 - Calculate the force exerted on a rocket when the...Ch. 7 - A 7700-kg boxcar traveling 14 m/s strikes a second...Ch. 7 - A child in a boat throws a 5.30-kg package out...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - An object at rest is suddenly broken apart into...Ch. 7 - A22- bullet traveling 240 m/s penetrates a 2.0-kg...Ch. 7 - Prob. 12PCh. 7 - Prob. 13PCh. 7 - Prob. 14PCh. 7 - Prob. 15PCh. 7 - A golf ball of mass 0.045 kg is hit off the lee at...Ch. 7 - Prob. 17PCh. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - Prob. 20PCh. 7 - Prob. 21PCh. 7 - With what impulse does a 0.50-kg newspaper have to...Ch. 7 - Prob. 23PCh. 7 - (a) Calculate the impulse experienced when a 55-kg...Ch. 7 - A ball of mass 0.440 kg moving east (+ x...Ch. 7 - 26. (II) A 0.450-kg hockey puck, moving east with...Ch. 7 - Prob. 27PCh. 7 - Two billiard balls of equal mass undergo a...Ch. 7 - 29. (II) A 0.280-kg croquet ball makes an elastic...Ch. 7 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Prob. 32PCh. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - Prob. 36PCh. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - Car A hits car B (initially at rest and of equal...Ch. 7 - Prob. 40PCh. 7 - Prob. 41PCh. 7 - Prob. 42PCh. 7 - Prob. 43PCh. 7 - Prob. 44PCh. 7 - Prob. 45PCh. 7 - Prob. 46PCh. 7 - An atomic nucleus of mass m traveling with speed v...Ch. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Find the center of mass of the three-mass system...Ch. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - Prob. 53PCh. 7 - Prob. 54PCh. 7 - Prob. 55PCh. 7 - Prob. 56PCh. 7 - Prob. 57PCh. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Prob. 66PCh. 7 - Prob. 67GPCh. 7 - Prob. 68GPCh. 7 - Prob. 69GPCh. 7 - Prob. 70GPCh. 7 - Prob. 71GPCh. 7 - Prob. 72GPCh. 7 - Prob. 73GPCh. 7 - Prob. 74GPCh. 7 - Prob. 75GPCh. 7 - Prob. 76GPCh. 7 - Prob. 77GPCh. 7 - Prob. 78GPCh. 7 - Prob. 79GPCh. 7 - Prob. 80GPCh. 7 - Astronomers estimate that a 2.0-km-diameter...Ch. 7 - Prob. 82GPCh. 7 - Prob. 83GPCh. 7 - Prob. 84GPCh. 7 - Prob. 85GPCh. 7 - 86. A novice pool player is faced with the corner...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Judy has a mass of 72.0kg and stands on slippery ice. She catches her leaping dog (mass 15.0kg),moving horizontally at 3.00 m/s. What is the speed of Judy and her dog after she catches him?arrow_forwardIf a ball has twice the mass but the same initial velocity, what effect would this have on its displacement (neglect air resistance)?arrow_forwardThe mass of a regulation tennis ball is 57 g (although it can vary slightly), and tests have shown that the ball is in contact with the tennis racket for 30 ms.(This number can also vary, depending on the racket and swing.) We shall assume a 30.0 ms contact time. One of the fastest-known served tennis balls was served by “Big Bill” Tilden in 1931, and its speed was measured to be 73 m/s. Suppose that the positive direction of the x-axis is along the direction of motion of the ball after Big Bill's hit. What is the x-component of the force exerted by Big Bill on the tennis ball in his record serve? If Big Bill's opponent returned his serve with a speed of 55 m/s what is the x-component of the force he exerted on the ball, assuming only horizontal motion?arrow_forward
- If two particles have equal kinetic energies, are their momenta equal?arrow_forwardA trebuchet is a mighty siege engine capable of flinging 90-kg projectiles a distance of 300 meters. Assuming a perfect launch angle of 45o, calculate the speed with which one of these projectiles leaves the trebuchet. You can assume the projectile lands at the same height from which it was launched.arrow_forwardThe ball strikes the smooth wall with a velocity of 25 m/s. If the coefficient of restitution between the ball and the wall is 0.70, determine the magnitude of the velocity (m/s) of the ball just after the impact. ROUNDING OFF ONLY USED IN FINAL ANSWER! I'll rate!arrow_forward
- Comic-strip hero Superman meets an asteroid in outer space and hurls it at 800 m/s, as fast as a bullet. The asteroid is a thousand times more massive than Superman. In the strip, Superman is seen at rest after the throw. Taking physics into account, what would be his recoil velocity?arrow_forwardTwo protons collide in a perfectly elastic collision. All motion occurs along a straight line. The first proton is moving at 6.90 x 106 m/s and the other is moving in the opposite direction at 11.0 x 106 m/s. What are their velocities after the collision?arrow_forward#2arrow_forward
- An iron sphere of mass 30 kg has the same diameter as an aluminum sphere of mass 10.5 kg. The spheres are simultaneously dropped from a cliff. When they are O m from the ground, they have identical O momentum O kinetic energy O potential energy O impulsearrow_forwardthis is a practice problem, not a graded assignmentarrow_forwardA ball of mass 0.5 kilogram, initially at rest, is kicked directly toward a fence from a point 32 meters away, as shown above. The velocity of the ball as it leaves the kicker's foot is 20 meters per second at an angle of 37o above the horizontal. The top of the fence is 2.5 meters high. The kicker's foot is in contact with the ball for 0.05 second. The ball hits nothing while in flight and air resistance is negligible. (a) Determine the magnitude of the average net force exerted on the ball during the kick. (b) Determine the time it takes for the ball to reach the plane of the fence. (c) Will the ball hit the fence? If so, how far below the top of the fence will it hit? If not, how far above the top of the fence will it pass? (d) On the axes below, sketch the horizontal and vertical components of the velocity of the ball as functions of time until the ball reaches the plane of the fence.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY