Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 11CQ
To determine
Relationship between
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cork gun contains a spring whose spring constant is 17 N/m. The spring is compressed by a distance ΔX = 4.8 cm and used to propel from the gun a cork of mass 1.86 g. Assuming the cork is released when the spring passes through its equilibrium position Xeq, what is the speed of the cork as it is released from the spring?
I have calculated this answer to correctly be 4.588 m/s.
The question I am having trouble with is:
Suppose now that the cork temporarily sticks to the spring, causing the spring to extend 2 cm beyond its equilibrium position before separation occurs. What is the speed of the cork as it is released from the spring in this case?
Two springs, each with spring constant k = 5.7 × 106 N m-¹ are used in a set of train
buffers. The springs are initially at their equilibrium length, neither stretched nor
compressed.
A locomotive of mass m = 6.4 × 104 kg travels at a speed of v=2.0 m s¹ towards the
buffers. By how much are the buffers compressed when the locomotive has been brought
to rest? Give your answer by entering a number, specified to an appropriate number of
significant figures, in the empty box below.
(For simplicity, you should ignore any dissipation of energy in the buffers.)
4
Chapter 7 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 7.2 - Prob. 7.1QQCh. 7.2 - shows four situations in which a force is applied...Ch. 7.3 - Which of the following statements is true about...Ch. 7.4 - A dart is inserted into a spring-loaded dart gun...Ch. 7.5 - A dart is inserted into a spring-loaded dart gun...Ch. 7.6 - Choose the correct answer. The gravitational...Ch. 7.6 - A ball is connected to a light spring suspended...Ch. 7.8 - What does the slope of a graph of U(x) versus x...Ch. 7 - Prob. 1OQCh. 7 - If the net work done by external forces on a...
Ch. 7 - Prob. 3OQCh. 7 - A cart is set rolling across a level table, at the...Ch. 7 - Let N represent the direction horizontally north,...Ch. 7 - Prob. 6OQCh. 7 - Prob. 7OQCh. 7 - As a simple pendulum swings back and forth, the...Ch. 7 - Bullet 2 has twice the mass of bullet 1. Both are...Ch. 7 - Prob. 10OQCh. 7 - If the speed of a particle is doubled, what...Ch. 7 - Prob. 12OQCh. 7 - Prob. 13OQCh. 7 - A certain spring that obeys Hookes law is...Ch. 7 - A cart is set rolling across a level table, at the...Ch. 7 - Prob. 16OQCh. 7 - Can a normal force do work? If not, why not? If...Ch. 7 - Object 1 pushes on object 2 as the objects move...Ch. 7 - Prob. 3CQCh. 7 - (a) For what values of the angle u between two...Ch. 7 - Prob. 5CQCh. 7 - Discuss the work done by a pitcher throwing a...Ch. 7 - Prob. 7CQCh. 7 - Prob. 8CQCh. 7 - Prob. 9CQCh. 7 - Prob. 10CQCh. 7 - Prob. 11CQCh. 7 - Prob. 12CQCh. 7 - Prob. 13CQCh. 7 - Cite two examples in which a force is exerted on...Ch. 7 - A shopper in a supermarket pushes a cart with a...Ch. 7 - Prob. 2PCh. 7 - In 1990, Walter Arfeuille of Belgium lifted a...Ch. 7 - The record number of boat lifts, including the...Ch. 7 - A block of mass m = 2.50 kg is pushed a distance d...Ch. 7 - Spiderman, whose mass is 80.0 kg, is dangling on...Ch. 7 - Prob. 7PCh. 7 - Vector A has a magnitude of 5.00 units, and vector...Ch. 7 - Prob. 9PCh. 7 - Find the scalar product of the vectors in Figure...Ch. 7 - Prob. 11PCh. 7 - Using the definition of the scalar product, find...Ch. 7 - Prob. 13PCh. 7 - Prob. 14PCh. 7 - A particle is subject to a force Fx that varies...Ch. 7 - In a control system, an accelerometer consists of...Ch. 7 - When a 4.00-kg object is hung vertically on a...Ch. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - Prob. 20PCh. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - A small particle of mass m is pulled to the top of...Ch. 7 - The force acting on a particle is Fx = (8x 16),...Ch. 7 - When different loads hang on a spring, the spring...Ch. 7 - Prob. 28PCh. 7 - Prob. 29PCh. 7 - Review. The graph in Figure P7.20 specifies a...Ch. 7 - Prob. 31PCh. 7 - Prob. 32PCh. 7 - A 0.600-kg particle has a speed of 2.00 m/s at...Ch. 7 - A 4.00-kg particle is subject to a net force that...Ch. 7 - A 2 100-kg pile driver is used to drive a steel...Ch. 7 - Review. In an electron microscope, there is an...Ch. 7 - Review. You can think of the workkinetic energy...Ch. 7 - Prob. 38PCh. 7 - Review. A 5.75-kg object passes through the origin...Ch. 7 - A 1 000-kg roller coaster car is initially at the...Ch. 7 - A 0.20-kg stone is held 1.3 m above the top edge...Ch. 7 - Prob. 42PCh. 7 - A 4.00-kg particle moves from the origin to...Ch. 7 - Prob. 44PCh. 7 - A force acting on a particle moving in the xy...Ch. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - For the potential energy curve shown in Figure...Ch. 7 - A right circular cone can theoretically be...Ch. 7 - The potential energy function for a system of...Ch. 7 - Prob. 55APCh. 7 - A particle moves along the xaxis from x = 12.8 m...Ch. 7 - Prob. 57APCh. 7 - Prob. 58APCh. 7 - Prob. 59APCh. 7 - Why is the following situation impossible? In a...Ch. 7 - Prob. 61APCh. 7 - Prob. 62APCh. 7 - An inclined plane of angle = 20.0 has a spring of...Ch. 7 - Prob. 64APCh. 7 - Prob. 65APCh. 7 - A particle of mass m = 1.18 kg is attached between...Ch. 7 - Prob. 67CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A certain uniform spring has spring constant k. Now the spring is cut in half. What is the relationship between k and the spring constant k of each resulting smaller spring? Explain your reasoning.arrow_forwardA block of mass m = 0.250 kg is pressed against a spring resting on the bottom of a plane inclined an angle = 45.0 to the horizontal. The spring, which has a force constant of 955 N/m, is compressed a distance of 8.00 cm, and the block is released from rest. Consider the total energy of the springblockEarth system. a. What is the total distance the block moves from its initial position if the incline is frictionless? b. What is the total distance the block moves from its initial position if the coefficient of kinetic friction between the incline and the block is 0.330?arrow_forwardA horizontal spring attached to a wall has a force constant of k = 850 N/m. A block of mass m = 1.00 kg is attached to the spring and rests on a frictionless, horizontal surface as in Figure P8.35. (a) The block is pulled to a position xi = 6.00 cm from equilibrium and released. Find the elastic potential energy stored in the spring when the block is 6.00 cm from equilibrium and when the block passes through equilibrium. (b) Find the speed of the block as it passes through the equilibrium point. (c) What is the speed of the block when it is at a position xi/2 = 3.00 cm? (d) Why isnt the answer to part (c) half the answer to part (b)? Figure P8.35arrow_forward
- A small 0.65-kg box is launched from rest by a horizontal spring as shown in Figure P9.50. The block slides on a track down a hill and comes to rest at a distance d from the base of the hill. The coefficient of kinetic friction between the box and the track is 0.35 along the entire track. The spring has a spring constant of 34.5 N/m, and is compressed 30.0 cm with the box attached. The block remains on the track at all times. a. What would you include in the system? Explain your choice. b. Calculate d. c. Compare your answer with your answer to Problem 50 if you did that problem.arrow_forwardConsider a linear spring, as in Figure 7.7(a), with mass M uniformly distributed along its length. The left end of the spring is fixed, but the right end, at the equilibrium position x=0 , is moving with speed v in the x-direction. What is the total kinetic energy of the spring? (Hint: First express the kinetic energy of an infinitesimal element of the spring dm in terms of the total mass, equilibrium length, speed of the right-hand end, and position along the spring; then integrate.)arrow_forwardA light spring with spring constant 1 200 N/m is hung from an elevated support. From its lower end hangs a second light spring, which has spring constant 1 800 N/m. An object of mass 1.50 kg is hung at rest from the lower end of the second spring. (a) Find the total extension distance of the pair of springs. (b) Find the effective spring constant of the pair of springs as a system. We describe these springs as in series.arrow_forward
- An inclined plane of angle = 20.0 has a spring of force constant k = 500 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in Figure P6.61. A block of mass m = 2.50 kg is placed on the plane at a distance d = 0.300 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what distance is the spring compressed when the block momentarily comes to rest?arrow_forwardConsider the data for a block of mass m = 0.250 kg given in Table P16.59. Friction is negligible. a. What is the mechanical energy of the blockspring system? b. Write expressions for the kinetic and potential energies as functions of time. c. Plot the kinetic energy, potential energy, and mechanical energy as functions of time on the same set of axes. Problems 5965 are grouped. 59. G Table P16.59 gives the position of a block connected to a horizontal spring at several times. Sketch a motion diagram for the block. Table P16.59arrow_forwardRubber tends to be nonlinear as an elastic material. Suppose a particular rubber band exerts a restoring force given by Fx(x) = Ax Bx2, where the empirical constants are A = 14 N/m and B = 3.3 N/m2 so that Fx is in newtons when x is in meters. Calculate the change in elastic potential energy of the rubber band when an external force stretches it from x = 0 to x = 0.20 m.arrow_forward
- A block of mass 300 g is attached to a spring of spring constant 100 N/m. The other end of the spring is attached to a support while the block rests on a smooth horizontal table and can slide freely without any friction. The block is pushed horizontally till the spring compresses by 12 cm, and then the block is released from rest. (a) How much potential energy was stored in the block-spring support system when the block was just released? (b) Determine the speed of the block when it crosses the point when the spring is neither compressed nor stretched. (c) Determine the speed of the block when it has traveled a distance of 20 cm from where it was released.arrow_forwardThe Flybar high-tech pogo stick is advertised as being capable of launching jumpers up to 6 ft. The ad says that the minimum weight of a jumper is 120 lb and the maximum weight is 250 lb. It also says that the pogo stick uses a patented system of elastometric rubber springs that provides up to 1200 lbs of thrust, something common helical spring sticks simply cannot achieve (rubber has 10 times the energy storing capability of steel). a. Use Figure P8.32 to estimate the maximum compression of the pogo sticks spring. Include the uncertainty in your estimate. b. What is the effective spring constant of the elastometric rubber springs? Comment on the claim that rubber has 10 times the energy-storing capability of steel. c. Check the ads claim that the maximum height a jumper can achieve is 6 ft.arrow_forwardConsider a block of mass 0.200 kg attached to a spring of spring constant 100 N/m. The block is placed on a frictionless table, and the other end of the spring is attached to the wall so that the spring is level with the table. The block is then pushed in so that the spring is compressed by 10.0 cm. Find the speed of the block as it crosses (a) the point when the spring is not stretched, (b) 5.00 cm to the left of point in (a), and (c) 5.00 cm to the right of point in (a).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY