Concept explainers
Interpretation:
Given that 2-chloro-2-methylpropane reacts with water in three steps to yield 2-methyl-2-propanol. The first step is slower than second, which in turn is much slower than the third. The reaction takes place slowly at room temperature and the equilibrium constant is approximately 1. For this reaction a) The approximate value of ΔG# and ΔG0 are to be given and b) An energy diagram labeling all points of interest and making sure that the relative energy levels on the diagram consistent with the information given is to be drawn.
Concept introduction:
Energy diagrams are used to depict graphically the energy changes that occur during a reaction. The vertical axis of the diagram represents the energy of all the reactants and the horizontal axis, called reaction coordinate, represents the progress of the reaction from beginning to end. The reactants are shown in left and the products in the right. The transition state represents the highest energy structure involved in the particular step reaction. The overall ΔG# is the energy difference between the reactants and highest transition state. Reactions with low ΔG# will occur at a faster rate. The overall ΔG0 is the free energy difference between the reactants and products. Every step in a reaction has a separate energy diagram.
Reactions with activation energies less than 80kJ/mol take place at or below room temperature.
To give:
The approximate value of ΔG# and ΔG0 and to draw an energy diagram labeling all points of interest and making sure that the relative energy levels on the diagram consistent with the information provided for the reaction.(Given that 2-chloro-2-methylpropane reacts with water in three steps to yield 2-methyl-2-propanol. The first step is slower than second, which in turn is much slower than the third. The reaction takes place slowly at room temperature and the equilibrium constant is approximately 1).
ΔG0 and equilibrium constant (Keq) are related as, ΔG0 = - RTln Keq

Trending nowThis is a popular solution!

Chapter 6 Solutions
EBK ORGANIC CHEMISTRY
- When anisole is treated with excess bromine, the reaction gives a product which shows two singlets in 1H NMR. Draw the product.arrow_forward(ii) Draw a reasonable mechanism for the following reaction: CI NaOH heat OH (hint: SNAr Reaction) :arrow_forwardDraw the major product in each of the following reaction:arrow_forward
- Draw the mechanism for the following Friedel-Craft reaction. AlBr3 Brarrow_forward(a) Draw the structures of A and B in the following reaction. (i) NaNH2, NH3(1) A + B (ii) H3O+arrow_forwardFor the reaction 2 N2O5(g) → 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 →> NO₂+ NO3_(K1) NO2 + NO3 → N2O5 (k-1) NO2 + NO3 → → NO2 + O2 + NO (K2) NO + N2O5- NO2 + NO2 + NO2 (K3) d[N₂O5] __2k‚k₂[N2O5] Indicate whether the following rate expression is acceptable: dt k₁₁+ k₂arrow_forward
- Consider the following decomposition reaction of N2O5(g): For the reaction 2 N2O5(g) → 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 → NO2 + NO3 (K1) NO2 + NO3 → N2O5 (k-1) NO2 + NO3 → NO2 + O2 + NO (K2) NO + N2O5 → NO2 + NO2 + NO2 (K3) Indicate whether the following rate expression is acceptable: d[N2O5] = -k₁[N₂O₂] + K¸₁[NO₂][NO3] - K¸[NO₂]³ dtarrow_forwardIn a reaction of A + B to give C, another compound other than A, B or C may appear in the kinetic equation.arrow_forwardFor the reaction 2 N2O5(g) → 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 →> NO₂+ NO3_(K1) NO2 + NO3 → N2O5 (k-1) NO2 + NO3 → → NO2 + O2 + NO (K2) NO + N2O5- NO2 + NO2 + NO2 (K3) d[N₂O5] __2k‚k₂[N2O5] Indicate whether the following rate expression is acceptable: dt k₁₁+ k₂arrow_forward
- Given the reaction R + Q → P, indicate the rate law with respect to R, with respect to P and with respect to P.arrow_forwardSteps and explanations. Also provide, if possible, ways to adress this kind of problems in general.arrow_forwardk₁ Given the reaction A B, indicate k-1 d[A] (A). the rate law with respect to A: (B). the rate law with respect to B: d[B] dt dtarrow_forward
