Interpretation:
To plot the nullclines
Concept Introduction:
Nullclines are the curves in the phase portrait where either
Fixed points occur where
The Jacobian matrix at a general point
The Eigenvalue
The solution of the quadratic equation is
The unstable manifold for a fixed point is the set of all points in the plane which tend to the fixed point as time goes to negative infinity.
Answer to Problem 6E
Solution:
a) The nullclines
b) The sign of
c) The Eigenvalues and Eigenvectors of the saddle points at
d) It is proved that the unstable manifold
e) The phase portrait for the given system is plotted.
Explanation of Solution
a) The system is given as
Nullclines are the curves in the phase portrait where either
Substituting
Thus,
Substituting
Therefore, the nullclines of the given system are
The nullclines plot for the given system equation is shown below:
b) The value of the system at
The sign of
c) The fixed points of the system would be where
The fixed points can be obtained by substituting
Therefore, the fixed points are
The Jacobian matrix at a general point
Substituting the given system in the Jacobian matrix,
The value of the Jacobian matrix at the fixed point
Therefore, from the Jacobian matrix, it is clear that the fixed point
The value of the Jacobian matrix at the fixed point
The value of the Jacobian matrix at the fixed point
The Eigenvalue
To find the Eigenvalues and the Eigenvectors of the Jacobian matrix
The determinant of the above matrix is
From the above matrix,
The above quadratic equation can be solved by using
Therefore, the Eigenvalue of the Jacobian matrix
The corresponding Eigenvectors for the above Jacobian matrix
Similarly, to find the Eigenvalues and the Eigenvectors of the Jacobian matrix
The determinant of the above matrix is
From the above matrix,
The above quadratic equation can be solved by using
Therefore, the Eigenvalue of the Jacobian matrix
The corresponding Eigenvectors for the above Jacobian matrix
d) The unstable manifold for a fixed point is the set of all points in the plane which tend to the fixed point as time goes to negative infinity.
Consider the unstable manifold of the saddle point
Since the system is reversible under the transformation
e) Consider the unstable manifold of the saddle point
Since the system is reversible under the transformation
The phase portrait of the given system is shown below:
Want to see more full solutions like this?
Chapter 6 Solutions
Nonlinear Dynamics and Chaos
- Already got wrong Chatgpt answer Plz don't use chat gptarrow_forwardT1 T₂ T7 T11 (15) (18) 8 (12) (60) 5 T3 T6 12° 5 5 5 T8 T10 T4 (25) T5 To 1. List all the maximal paths and their weights for the graph above. 2. Give the decreasing-time priority list. 3. Schedule the project using 2 processors and the decreasing-time priority list.arrow_forwardHorizontal cross-sections of the vector fields F⃗ (x,y,z) and G⃗ (x,y,z) are given in the figure. Each vector field has zero z-component (i.e., all of its vectors are horizontal) and is independent of z (i.e., is the same in every horizontal plane). You may assume that the graphs of these vector fields use the same scale. (a) Are div(F⃗ ) and div(G⃗ ) positive, negative, or zero at the origin? Be sure you can explain your answer. At the origin, div(F⃗ ) is Choose At the origin, div(G⃗ ) is Choose (b) Are F⃗ and G⃗ curl free (irrotational) or not at the origin? Be sure you can explain your answer. At the origin, F⃗ is Choose At the origin, G⃗ isarrow_forward
- I need a counter example for this predicate logic question only do f please thanksarrow_forwardLet M be the capped cylindrical surface which is the union of two surfaces, a cylinder given by x² + y² = 9, 0 ≤ z < 1, and a hemispherical cap defined by x² + y² + (z − 1)² = 9, z ≥ 1. For the vector field F = (x²), : (zx + z²y +2y, z³yx + 4x, z²x² compute M (V × F) · dS in any way you like. ſſ₁(▼ × F) · dS = •arrow_forwardHorizontal cross-sections of the vector fields F⃗ (x,y,z) and G⃗ (x,y,z) are given in the figure. Each vector field has zero z-component (i.e., all of its vectors are horizontal) and is independent of z (i.e., is the same in every horizontal plane). You may assume that the graphs of these vector fields use the same scale. (a) Are div(F⃗ ) and div(G⃗ ) positive, negative, or zero at the origin? Be sure you can explain your answer. At the origin, div(F⃗ ) is At the origin, div(G⃗ ) is (b) Are F⃗ and G⃗ curl free (irrotational) or not at the origin? Be sure you can explain your answer. At the origin, F⃗ is At the origin, G⃗ is (c) Is there a closed surface around the origin such that F⃗ has nonzero flux through it? Be sure you can explain your answer by finding an example or a counterexample. (d) Is there a closed surface around the origin such that G⃗ has nonzero circulation around it? Be sure you can explain your answer by finding an example or a…arrow_forward
- 2. Let X and Y be sets and let f: XY. Prove that f is injective for all sets U, for all functions h: UX and k: UX, if foh=fok, then h = k.arrow_forwardBY Euler's method approxmate the solution. y' (t) = [cos (Y(+1)]², -ost≤1, y(o)=0 h=015arrow_forwardA company produces a spherical object of radius 23 centimeters. A hole of radius 8 centimeters is drilled through the center of the object. (a) Find the volume (in cm³) of the object. (Round your answer to one decimal place.) 48820.4 × cm³ 3 (b) Find the outer surface area (in cm²) of the object. (Round your answer to one decimal place.) 6647.7 x cm²arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage