Interpretation:
To find fixed points, draw nullclines, vector fields, and phase portrait of the given differential equation system.
Concept Introduction:
Fixed point of a differential equation is a point where
Nullclines are the curves where either
Vector fields in this aspect represent the direction of flow and whether flow is going away from fixed point or coming towards it.
Phase portraits represent the trajectories of the system with respect to the parameters and give qualitative idea about evolution of the system, its fixed points, and whether they will attract or repel the flow etc.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Nonlinear Dynamics and Chaos
- i+e³ j. shows the direction of the winds 2 in the sky on a windy day, viewing above. If you decide to fly a kite with the coordinates of [0.5, 0.5] in this vector field, what would be the path that your kite travel? Imagine the vector field generated by the function: F = The kite would fly towards the point with [2,-1] coordinate. The kite would fly towards the y = -0.5 line. The kite would fly towards the point with [1,1] coordinate. The kite would fly towards the point with [-2,-1] coordinate.arrow_forwarda. Sketch the graph of r(t) = ti+t2j. Show that r(t) is a smooth vector-valued function but the change of parameter t = 73 produces a vector-valued function that is not smooth, yet has the same graph as r(t). b. Examine how the two vector-valued functions are traced, and see if you can explain what causes the problem.arrow_forwardConsider R = xi +yj+zk and r = a constant vector A = a1 +a2 í + az k: What is (A. V)R in terms of A? What is V?r-1. Note: You could directly write similar derivatives once you evaluate one of them.arrow_forward
- The vector function r(t) is the position of a particle in space at time t. Determine the graph of the position function. r(t) = (3t cos t)i + (3t sin t)j + 2tkarrow_forwardA net is dipped in a river. Determine the flow rate of water across the net if the velocity vector field for the river is given by = (x - y, z + y + 9, z) and the net is decribed by the equation y = V1-x - z, y 2 0, and oriented in the positive y- direction. (Use symbolic notation and fractions where needed.) V. dS =arrow_forwardIf r(t) is the position vector of a particle in the plane at time t, find the indicated vector. Find the acceleration vector. r(t) = (cos 3t)i + (2 sin t)j %3D O a = (-9 cos 3t)i + (-2 sin t)j O a = (-3 cos 3t)i + (2 sin t)j O a = (9 cos 3t)i + (-2 sin t)j O a = (-9 cos 3t)i + (-4 sin t)jarrow_forward
- Please solve thisarrow_forwardGraph vector fields for both questions separately. Don't attempt if solving single problem or without steps.arrow_forwardA net is dipped in a river. Determine the flow rate of water across the net if the velocity vector field for the river is given by v = (x-y, z + y + 3, z²) and the net is decribed by the equation y = √1-x²-2², y ≥ 0, and oriented in the positive y- direction. (Use symbolic notation and fractions where needed.)arrow_forward
- Part 1.Given that the acceleration vector is a(t)=(−16cos(−4t))i+(−16sin(−4t))j+(3t)k the initial velocity is v(0)=i+k, and the initial position vector is r(0)=i+j+k, compute: A. The position vector r(t) B. The velocity vector v(t) Part2.Find the arclength of the curve r(t)=⟨72–√t,e7t,e−7t⟩r(t)=⟨72t,e7t,e−7t⟩, 0≤t≤1arrow_forwardRepresent the line segment from P to Q by a vector-valued function. (P corresponds to t = 0. Q corresponds to t = 1.) P(−7, −5, −1), Q(−1, −9, −6) (a) r(t) = (b) Represent the line segment from P to Q by a set of parametric equations. (Enter your answers as a comma-separated list of equations.)arrow_forwardA fire ant, searching for hot sauce in a picnic area, goes through three displacements along level ground: d→1 for 0.41 m southwest (that is, at 45° from directly south and from directly west), d→2 for 0.52 m due east, and d→3 for 0.77 m at 60° north of east. Let the positive x direction be east and the positive y direction be north. What are (a) the x component and (b) the y component of d→1? What are (c) the x component and (d) the y component of d→2? What are (e) the x component and (f) the y component of d→3? What are (g) the x component and (h) the y component, (i) the magnitude, and (j) the direction of the ant's net displacement? If the ant is to return directly to the starting point, (k) how far and (l) in what direction should it move? Give all angles as positive (counterclockwise) angles relative to the +x-axis.arrow_forward
- Advanced Engineering MathematicsAdvanced MathISBN:9780470458365Author:Erwin KreyszigPublisher:Wiley, John & Sons, IncorporatedNumerical Methods for EngineersAdvanced MathISBN:9780073397924Author:Steven C. Chapra Dr., Raymond P. CanalePublisher:McGraw-Hill EducationIntroductory Mathematics for Engineering Applicat...Advanced MathISBN:9781118141809Author:Nathan KlingbeilPublisher:WILEY
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,