Nonlinear Dynamics and Chaos
Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780429972195
Author: Steven H. Strogatz
Publisher: Taylor & Francis
bartleby

Videos

Question
Book Icon
Chapter 6.3, Problem 11E
Interpretation Introduction

Interpretation:

To calculate r(t) and θ(t) explicitly for the given initial conditions (r00). The system is in polar coordinates given by r˙ = - r, θ˙ = 1lnr. Prove that r(t)0 and |θ(t)| as t and origin is a stable spiral. Show that the linearized system at the origin is x˙=-x,y˙=-y and origin is a stable star for the linearized system.

Concept Introduction:

The linearized system for x˙ = f(x, y),y˙ = g(x, y) can be expressed as (x˙y˙)=(x˙xx˙yy˙xy˙y)(xy).

The matrix (x˙xx˙yy˙xy˙y) is a Jacobian matrix at any fixed point (x*,y*).

Expert Solution & Answer
Check Mark

Answer to Problem 11E

Solution:

r(t) = r0e-t, θ(t) = ln (ln(r0)|ln(r0) - t|)+ θ0.

r(t)0 and |θ(t)| as t is proved and origin is a stable spiral is proved.

The system in Cartesian coordinate is x˙ = -x -2yln(x2+y2), y˙ = -y +2xln(x2+y2).

The linearized system at the origin is x˙=-x,y˙=-y is proved and origin is a stable star.

Explanation of Solution

Using the first equation

r˙  = - rdrdt = -rdrr = -dtr0rdrr= - 0tdtlnr - lnr0= -tlnrr0=-tr(t) = r0e-t

θ˙ = 1lnrr(t) = r0e-tθ˙ = 1ln(r0e-t)θ˙ =1ln(r0) + lne-tθ˙ =1ln(r0) - t

Integrating both sides,

θ(t) = -ln|ln(r0) - t| + ln(ln(r0)) + θ0θ(t) = ln (ln(r0)|ln(r0) - t|)+ θ0

r(t) = r0e-t

When t, r(t)0 and θ(t)0.

Solve the stability of the origin by solving limtr(t).

limtr(t)=limtr0e- t0

Thus the origin is a stable point.

Solve the nature of the origin by solving limtθ(t).

limt|θ(t)|limtln |ln(r0)|ln(r0) - t|+ θ0|

Thus the origin is spiral.

The system in x, y can be written as,

r = x2+y2θ = arctan(yx)r˙ =ddtx2+y2r˙ = 2xx˙+2yy˙2x2+y2r˙ = xx˙+yy˙x2+y2θ˙ =ddtarctan(yx)θ˙ = xy˙-yx˙x2+y2

Comparing the above polar coordinates with the given coordinates,

r˙ = -r r˙ =xx˙+yy˙x2+y2 r = -(xx˙+yy˙x2+y2)r =x2+y2x2+y2 = - xx˙ - yy˙x2+y2x2+y2= -(xx˙ + yy˙).......................1)θ˙ =1lnr θ˙ = xy˙ - yx˙x2+ y2xy˙-yx˙x2+y2=1ln rr =x2+y2xy˙-yx˙x2+y2 = 1ln(x2+y2)xy˙-yx˙ = 2(x2+y2)ln(x2+y2)......................2)

Multiply equation 1) by x and equation 2) by y and subtract,

x(xx˙ + yy˙)-y(xy˙-yx˙)= - x (x2+y2) - y2(x2+y2)ln(x2+y2)(x2+y2)x˙= -x(x2+y2) - y2(x2+y2)ln(x2+y2)x˙ = -x -2yln(x2+y2)

Multiply equation 1) by y and equation 2) by x and add,

y(xx˙ + yy˙) + x(xy˙-yx˙) = - y (x2+y2) + x2(x2+y2)ln(x2+y2)(x2+y2)y˙ = -y(x2+y2) + x2(x2+y2)ln(x2+y2)y˙ = -y +2xln(x2+y2)

The Jacobian matrix at any fixed point (x*,y*) given as,

A=(x˙xx˙yy˙xy˙y)

Substituting values of x˙ , y˙  of part c) in the above Jacobian matrix,

A=((-x -2yln(x2+y2))x(-x -2yln(x2+y2))y(-y +2xln(x2+y2))x(-y +2xln(x2+y2))y)A=(-1 +4xy(x2+y2)ln2(x2+y2) 4y2(x2+y2)ln2(x2+y2)2ln(x2+y2)2ln(x2+y2)4x2(x2+y2)ln2(x2+y2)-1 - 4xy(x2+y2)ln2(x2+y2))A(0,0)=(-1  00-1)A(xy)=(x˙y˙)(-1  00-1)(xy)=(x˙y˙)(-x-y)=(x˙y˙)

It is proved and origin is a stable star for the linearized system.

Conclusion

Integrating given polar equations we can find r(t) and θ(t) explicitly for the given initial conditions (r00). Also, r(t)0 and |θ(t)| as t is proved. In this case, the origin is a stable spiral. The linearized system at the origin is x˙=-x,y˙=-y is proved and origin is a stable star.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Already got wrong chatgpt answer Plz don't use chatgpt answer will upvote
7. Suppose that X is a set, that I is a nonempty set, and that for each i Є I that Yi is a set. Suppose that I is a nonempty set. Prove the following:2 (a) If Y; CX for all i EI, then Uiel Yi C X. ¹See Table 4.8.1 in zyBooks. Recall: Nie X₁ = Vi Є I (x = X₁) and x = Uier X₁ = i Є I (x Є Xi). (b) If XCY; for all i Є I, then X Ciel Yi. (c) U(x)=xnUY. iЄI ΕΙ
8. For each of the following functions, determine whether or not it is (i) injective and/or (ii) surjective. Justify why or why not. (a) fiZZ defined by fi(n) = 2n. (b) f2 RR defined by f2(x) = x² − 4x+7. : (c) f3 Z {0, 1} defined by f3(n) = 0 if n is even and f3(n) = 1 if n is odd. (d) f4 Z N defined by f4(n) = 2n if n > 0 and f4(n) = -2n-1 if n < 0.

Chapter 6 Solutions

Nonlinear Dynamics and Chaos

Ch. 6.1 - Prob. 11ECh. 6.1 - Prob. 12ECh. 6.1 - Prob. 13ECh. 6.1 - Prob. 14ECh. 6.2 - Prob. 1ECh. 6.2 - Prob. 2ECh. 6.3 - Prob. 1ECh. 6.3 - Prob. 2ECh. 6.3 - Prob. 3ECh. 6.3 - Prob. 4ECh. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Prob. 8ECh. 6.3 - Prob. 9ECh. 6.3 - Prob. 10ECh. 6.3 - Prob. 11ECh. 6.3 - Prob. 12ECh. 6.3 - Prob. 13ECh. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.4 - Prob. 1ECh. 6.4 - Prob. 2ECh. 6.4 - Prob. 3ECh. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.5 - Prob. 1ECh. 6.5 - Prob. 2ECh. 6.5 - Prob. 3ECh. 6.5 - Prob. 4ECh. 6.5 - Prob. 5ECh. 6.5 - Prob. 6ECh. 6.5 - Prob. 7ECh. 6.5 - Prob. 8ECh. 6.5 - Prob. 9ECh. 6.5 - Prob. 10ECh. 6.5 - Prob. 11ECh. 6.5 - Prob. 12ECh. 6.5 - Prob. 13ECh. 6.5 - Prob. 14ECh. 6.5 - Prob. 15ECh. 6.5 - Prob. 16ECh. 6.5 - Prob. 17ECh. 6.5 - Prob. 18ECh. 6.5 - Prob. 19ECh. 6.5 - Prob. 20ECh. 6.6 - Prob. 1ECh. 6.6 - Prob. 2ECh. 6.6 - Prob. 3ECh. 6.6 - Prob. 4ECh. 6.6 - Prob. 5ECh. 6.6 - Prob. 6ECh. 6.6 - Prob. 7ECh. 6.6 - Prob. 8ECh. 6.6 - Prob. 9ECh. 6.6 - Prob. 10ECh. 6.6 - Prob. 11ECh. 6.7 - Prob. 1ECh. 6.7 - Prob. 2ECh. 6.7 - Prob. 3ECh. 6.7 - Prob. 4ECh. 6.7 - Prob. 5ECh. 6.8 - Prob. 1ECh. 6.8 - Prob. 2ECh. 6.8 - Prob. 3ECh. 6.8 - Prob. 4ECh. 6.8 - Prob. 5ECh. 6.8 - Prob. 6ECh. 6.8 - Prob. 7ECh. 6.8 - Prob. 8ECh. 6.8 - Prob. 9ECh. 6.8 - Prob. 10ECh. 6.8 - Prob. 11ECh. 6.8 - Prob. 12ECh. 6.8 - Prob. 13ECh. 6.8 - Prob. 14E
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Finite State Machine (Finite Automata); Author: Neso Academy;https://www.youtube.com/watch?v=Qa6csfkK7_I;License: Standard YouTube License, CC-BY
Finite State Machine (Prerequisites); Author: Neso Academy;https://www.youtube.com/watch?v=TpIBUeyOuv8;License: Standard YouTube License, CC-BY