
Concept explainers
To find:Whether the sequence

Answer to Problem 12E
The sequence
Explanation of Solution
Given information:The sequence
Calculation:A sequence is said to be arithmetic sequence if every term of the sequence, after the first term, is obtained by adding a constant to the preceding term. The constant is known as common difference.
A sequence is said to be geometric sequence if every term of the sequence, after the first term, is obtained by multiplying a constant to the preceding term. The constant is known as common ratio.
Here, the 1st term
Difference between 1st and 2nd term
Difference between 2nd and 3rd term
Difference between 3rd and 4th term
Since, each term of the sequence is not obtained by adding a constant to the preceding term, the sequence is not arithmetic.
Again, the 1st term
Dividing 2nd term by 1st term
Dividing 3rd term by 2nd term
Dividing 4th term by 3rd term
And so on.
Since, each term of the sequence is obtained by multiplying a constant 7 to the preceding term, the sequence is geometric.
Chapter 6 Solutions
BIG IDEAS MATH Algebra 1: Common Core Student Edition 2015
- 1. For the following subsets of R3, explain whether or not they are a subspace of R³. (a) (b) 1.1 0.65 U = span -3.4 0.23 0.4 -0.44 0 (})} a V {(2) | ER (c) Z= the points in the z-axisarrow_forwardSolve the following equation forx. leave answer in Simplified radical form. 5x²-4x-3=6arrow_forwardMATCHING LIST Question 6 Listen Use the given equations and their discriminants to match them to the type and number of solutions. 00 ed two irrational solutions a. x²+10x-2=-24 two rational solutions b. 8x²+11x-3=7 one rational solution c. 3x²+2x+7=2 two non-real solutions d. x²+12x+45 = 9 DELL FLOWER CHILD 10/20 All Changes S $681 22991arrow_forward
- 88 MULTIPLE CHOICE Question 7 Listen The following irrational expression is given in unsimplified form with four op- tions in simplified form. Select the correct simplified form. Select only one option. A 2±3√√2 B 4±√3 2±√ √3 D 1±√√3 DELL FLOWER CHILD 11/200 4 ± √48 4 ✓ All Changes Saved 165arrow_forwardUse the graph of y = f(x) to answer the following. 3- 2 -4 -2 -1 1 2 3 4 -1 2 m -3- + (d) Find all x for which f(x) = -2. If there is more than one value, separate them with commas or write your answer in interval notation, if necessary. Select "None", if applicable. Value(s) of x for which f(x)=-2: | (0,0) (0,0) (0,0) (0,0) 0,0... -00 None (h) Determine the range of f. The range is (0,0) Garrow_forwardWhat is g(f(4))arrow_forward
- 10) Multiply (8m + 3)² A) 8m²+11m+6 B) m² + 48m+9 C) 64m²+48m+9 D) 16m²+11m+6arrow_forwardLet R be field and X= R³/s Vector space over R M=(a,b,c)labic, e Rra+b= 3- <3 Show that Ms and why with proof. 1) is convexset and affine set of botost ii) is blanced set and symmetirs set of x iii) is hy per space and hyper plane ofx or hot iii) find f:MR st kerf = M 18/103 and finnd fiM→R/{0} st M= {xEX, f(t) = x, texiαER? jiii) show that Mis Maxsubspace or not and Mis a max. affine set or not.arrow_forwardFind The partial fraction decomposition for each The following 2× B) (x+3) a 3 6 X-3x+2x-6arrow_forward
- 1) Find the partial feraction decomposition for each of 5- X 2 2x+x-1 The following: 3 B) 3 X + 3xarrow_forwardT={(−7,1),(1,−1),(6,−8),(2,8)} Find the domain and range of the inverse. Express your answer as a set of numbers.arrow_forwardT={(−7,1),(1,−1),(6,−8),(2,8)}. Find the inverse. Express your answer as a set of ordered pairs.arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education





