(a)
Interpretation:
For the given set of conditions the reaction favors reactant or product side should be identified.
Concept introduction:
Entropy: It is usually defined as the degree of the randomness or disorder present in the respective system.
The total entropy change associated with given reaction is equal to the sum of both entropy change associated with the system and the surrounding.
The entropy change within the system is the difference between the final and the initial states in the system. The entropy change in the given
Enthalpy:
The enthalpy change for the reaction is determined by bond breaks and bond formation in the reaction.
Gibbs free energy: The Gibbs free energy depends on the two terms entropy change and the enthalpy change which is affected by the temperature.
General formula to calculate the Gibbs free energy is
When the heat energy was absorbed by the system from the surrounding is called endothermic reaction
When heat energy or light energy was unconfined to the surrounding from the system is called exothermic reaction.
Equilibrium constant: It is defined as the ratio of concentration of product with respect to the reactant. The value of
(b)
Interpretation:
For the given set of conditions the reaction favors reactant or product side should be identified.
Concept introduction:
Entropy: It is usually defined as the degree of the randomness or disorder present in the respective system.
The total entropy change associated with given reaction is equal to the sum of both entropy change associated with the system and the surrounding.
The entropy change within the system is the difference between the final and the initial states in the system. The entropy change in the given chemical reaction is as follows,
Enthalpy:
The enthalpy change for the reaction is determined by bond breaks and bond formation in the reaction.
Gibbs free energy: The Gibbs free energy depends on the two terms entropy change and the enthalpy change which is affected by the temperature.
General formula to calculate the Gibbs free energy is
When the heat energy was absorbed by the system from the surrounding is called endothermic reaction
When heat energy or light energy was unconfined to the surrounding from the system is called exothermic reaction.
Equilibrium constant: It is defined as the ratio of concentration of product with respect to the reactant. The value of
(c)
Interpretation:
For the given set of conditions the reaction favors reactant or product side should be identified.
Concept introduction:
Entropy: It is usually defined as the degree of the randomness or disorder present in the respective system.
The total entropy change associated with given reaction is equal to the sum of both entropy change associated with the system and the surrounding.
The entropy change within the system is the difference between the final and the initial states in the system. The entropy change in the given chemical reaction is as follows,
Enthalpy:
The enthalpy change for the reaction is determined by bond breaks and bond formation in the reaction.
Gibbs free energy: The Gibbs free energy depends on the two terms entropy change and the enthalpy change which is affected by the temperature.
General formula to calculate the Gibbs free energy is
When the heat energy was absorbed by the system from the surrounding is called endothermic reaction
When heat energy or light energy was unconfined to the surrounding from the system is called exothermic reaction.
Equilibrium constant: It is defined as the ratio of concentration of product with respect to the reactant. The value of
(d)
Interpretation:
For the given set of conditions the reaction favors reactant or product side should be identified.
Concept introduction:
Entropy: It is usually defined as the degree of the randomness or disorder present in the respective system.
The total entropy change associated with given reaction is equal to the sum of both entropy change associated with the system and the surrounding.
The entropy change within the system is the difference between the final and the initial states in the system. The entropy change in the given chemical reaction is as follows,
Enthalpy:
The enthalpy change for the reaction is determined by bond breaks and bond formation in the reaction.
Gibbs free energy: The Gibbs free energy depends on the two terms entropy change and the enthalpy change which is affected by the temperature.
General formula to calculate the Gibbs free energy is
When the heat energy was absorbed by the system from the surrounding is called endothermic reaction
When heat energy or light energy was unconfined to the surrounding from the system is called exothermic reaction.
Equilibrium constant: It is defined as the ratio of concentration of product with respect to the reactant. The value of
(e)
Interpretation:
For the given set of conditions the reaction favors reactant or product side should be identified.
Concept introduction:
Entropy: It is usually defined as the degree of the randomness or disorder present in the respective system.
The total entropy change associated with given reaction is equal to the sum of both entropy change associated with the system and the surrounding.
The entropy change within the system is the difference between the final and the initial states in the system. The entropy change in the given chemical reaction is as follows,
Enthalpy:
The enthalpy change for the reaction is determined by bond breaks and bond formation in the reaction.
Gibbs free energy: The Gibbs free energy depends on the two terms entropy change and the enthalpy change which is affected by the temperature.
General formula to calculate the Gibbs free energy is
When the heat energy was absorbed by the system from the surrounding is called endothermic reaction
When heat energy or light energy was unconfined to the surrounding from the system is called exothermic reaction.
Equilibrium constant: It is defined as the ratio of concentration of product with respect to the reactant. The value of

Want to see the full answer?
Check out a sample textbook solution
Chapter 6 Solutions
ORGANIC CHEMISTRY LL PRINT UPGRADE
- 5. Write the formation reaction of the following complex compounds from the following reactants: 6. AgNO₃ + K₂CrO₂ + NH₄OH → 7. HgNO₃ + excess KI → 8. Al(NO₃)₃ + excess NaOH →arrow_forwardIndicate whether the product formed in the reaction exhibits tautomerism. If so, draw the structure of the tautomers. CO₂C2H5 + CH3-NH-NH,arrow_forwardDraw the major product of this reaction N-(cyclohex-1-en-1-yl)-1-(pyrrolidino) reacts with CH2=CHCHO, heat, H3O+arrow_forward
- Draw the starting material that would be needed to make this product through an intramolecular Dieckmann reactionarrow_forwardDraw the major product of this reaction. Nitropropane reacts + pent-3-en-2-one reacts with NaOCH2CH3, CH3CHOHarrow_forwardIndicate whether the product formed in the reaction exhibits tautomerism. If so, draw the structure of the tautomers. OC2H5 + CoHs-NH-NH,arrow_forward
- Explain how substitutions at the 5-position of barbituric acid increase the compound's lipophilicity.arrow_forwardExplain how substitutions at the 5-position of phenobarbital increase the compound's lipophilicity.arrow_forwardName an interesting derivative of barbituric acid, describing its structure.arrow_forward
- Briefly describe the synthesis mechanism of barbituric acid from the condensation of urea with a β-diketone.arrow_forwardGiven the hydrazones indicated, draw the structures of the enamines that can be formed. Indicate the most stable enamine (explain). C6H5 C6H5 H C6H5 Harrow_forward4. Propose a Synthesis for the molecule below. You may use any starting materials containing 6 carbons or less (reagents that aren't incorporated into the final molecule such as PhзP do not count towards this total, and the starting material can have whatever non-carbon functional groups you want), and any of the reactions you have learned so far in organic chemistry I, II, and III. Your final answer should show each step separately, with intermediates and conditions clearly drawn.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





