
Precision Machining Technology
3rd Edition
ISBN: 9781337795302
Author: Peter, Hoffman.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.3, Problem 12RQ
To determine
Two basic types of keys.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
a 300n girl and an 400n boy stand on a 16m platform supported by posts A and B. The platform itself weighs 200N. What are the forces exerted by the supports on the platform?
C
A cylindrical piece of steel 38 mm (1½ in.) in
diameter is to be quenched in moderately agi-
tated oil. Surface and center hardnesses must be
at least 50 and 40 HRC, respectively. Which of
the following alloys satisfy these requirements:
1040, 5140, 4340, 4140, and 8640? Justify your
choice(s).
Using the isothermal transformation diagram for a 1.13 wt% C steel alloy (Figure 10.39),
determine the final microstructure (in terms of just the microconstituents present) of a small
specimen that has been subjected to the following time-temperature treatments. In each case
assume that the specimen begins at 920°C (1690°F) and that it has been held at this
temperature long enough to have achieved a complete and homogeneous austenitic structure.
(a) Rapidly cool to 250°C (480°F), hold for 103 s, then quench to room temperature.
(b) Rapidly cool to 775°C (1430°F), hold for 500 s, then quench to room temperature.
(c) Rapidly cool to 400°C (750°F), hold for 500 s, then quench to room temperature.
(d) Rapidly cool to 700°C (1290°F), hold at this temperature for 105 s, then quench to room
temperature.
(e) Rapidly cool to 650°C (1200°F), hold at this temperature for 3 s, rapidly cool to 400°C
(750°F), hold for 25 s, then quench to room temperature.
(f) Rapidly cool to 350°C (660°F), hold for…
Chapter 6 Solutions
Precision Machining Technology
Ch. 6.1 - What part of the vertical milling machine allows...Ch. 6.1 - Briefly describe the direction of movement...Ch. 6.1 - When a table handle is turned clockwise the table...Ch. 6.1 - What distance does the saddle or table usually...Ch. 6.1 - Prob. 5RQCh. 6.1 - Briefly describe the function of the turret and...Ch. 6.1 - What is the name of the taper found in most modem...Ch. 6.1 - What part of the vertical mill can be raised and...Ch. 6.1 - How can power quill feed be automatically stopped...Ch. 6.1 - What is a benefit of using a DRO instead of...
Ch. 6.2 - Many of the cutters used in machining are made of...Ch. 6.2 - What is the major advantage of using...Ch. 6.2 - Prob. 3RQCh. 6.2 - What type of cutting tool would most likely be...Ch. 6.2 - Which type of cutter would most likely be used to...Ch. 6.2 - What workpiece factors might cause a four-flute...Ch. 6.2 - List three types of milling cutters that are used...Ch. 6.2 - Most manual vertical milling machine spindles are...Ch. 6.2 - A __________ is used to retain the toolholder in...Ch. 6.2 - What type of toolholder might he selected for...Ch. 6.2 - Sketch a corner-rounding endmill.Ch. 6.2 - What toolholding device uses two drive keys and a...Ch. 6.2 - Prob. 13RQCh. 6.2 - List the four basic pieces of a step clamp set: a....Ch. 6.2 - Prob. 15RQCh. 6.2 - Irregularly shaped work may be held in a custom...Ch. 6.3 - List five safety guidelines to observe when...Ch. 6.3 - Briefly describe the process of aligning a milling...Ch. 6.3 - What is chip load?Ch. 6.3 - Define IPM.Ch. 6.3 - Calculate spindle speed and feed for the two...Ch. 6.3 - Briefly describe the process of locating the...Ch. 6.3 - What are two benefits of boring over other...Ch. 6.3 - What are face milling and peripheral milling?Ch. 6.3 - When squaring a block on the vertical mill, what...Ch. 6.3 - What are the three basic methods used to mill...Ch. 6.3 - What must first be done before milling with either...Ch. 6.3 - Prob. 12RQCh. 6.3 - What diameter cutter should be used to create...Ch. 6.3 - When roughing a pocket, should you machine in a...Ch. 6.4 - What is a rotary axis?Ch. 6.4 - Define the term indexing.Ch. 6.4 - Describe the primary differences between the...Ch. 6.4 - Name three types of workpiece features that are...Ch. 6.4 - Briefly describe the two alignment steps that need...Ch. 6.4 - If the outside of a 6"-diameter disk is to be...Ch. 6.4 - What is the gear ratio found in the gear train of...Ch. 6.4 - When using the indexing head, a __________ can be...Ch. 6.4 - A workpiece requires 9 divisions. Calculate the...Ch. 6.4 - In the formula 40D=T,what do T and D represent?
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- How to solve this?arrow_forwardA start-up company wants to convert an ICE vehicle into an electric vehicle with the following specification. Power: 250 (HP) horsepower, (note: 1HP = 745 W) Range: 300-miles Fuel economy: 33.5 kilometers per gallon of gasoline. Efficiency of the ICE: 25% Energy Conversion: One gallon of gasoline at 100% efficiency is equal to 33.5 kWh/gallon). a)Calculate the EV consumption rate as Wh/km and find the total energy of the battery pack in KWh to replace the internal combustion engine. b)Design an 8-module battery pack for this full electric vehicle without compromising its range and performance (power). Use commercially available cylindrical cells lithium cell with 20Ah capacity and 3.125 V average voltage. Cell dimensions are 5cm diameter and 10 cm height. The electric motor requires 250 V input that will be provided directly from the battery pack, Report the configuration of each module in…arrow_forward"11-17 The shaft shown in Figure P11-3 was designed in Problem 10-17. For the data in the row(s) assigned from Table P11-1, and the corresponding diameter of shaft found in Problem 10-17, design suitable bearings to support the load for at least 1E8 cycles at 1800 rpm. State all assumptions. (a) Using hydrodynamically lubricated bronze sleeve bearings with Ox = 15, 11d=0.75, and a clearance ratio of 0.001. ✓ ✓ cast-iron roller FIGURE P11-3 Shaft Design for Problems 11-17 b gear key assume bearings act as simple supports 11-19 The shaft shown in Figure P11-4 was designed in Problem 10-19. For the data in the row(s) assigned from Table P11-1, and the corresponding diameter of shaft found in Problem 10-19, design suitable bearings to support the load for at least 5E8 cycles at 1200 rpm. State all assumptions. (a) Using hydrodynamically lubricated bronze sleeve bearings with Oy = 40, 1/d=0.80, and a clearance ratio of 0.002 5. gear gear key FIGURE P11-4 Shaft Design for Problems 11-19 and…arrow_forward
- For the frame below calculate the bending moment at point R. Take P=40 and note that this value is used for both the loads and the lengths of the members of the frame. 2.5P- A Q B R С 45 degrees ✗ ✗ P i 19 Кур -2P- 4PRN -P- -arrow_forwardCalculate the bending moment at the point D on the beam below. Take F=79 and remember that this quantity is to be used to calculate both forces and lengths. 15F 30F A сarrow_forwardShow work on how to obtain P2 and T2. If using any table, please refer to it. If applying interpolation method, please show the work.arrow_forwardcast-iron roller FIGURE P11-3 Shaft Design for Problems 11-17 Chapter 11 BEARINGS AND LUBRICATION 677 gear key P assume bearings act as simple supports 11-18 Problem 7-18 determined the half-width of the contact patch for a 1.575-in-dia steel cylinder, 9.843 in long, rolled against a flat aluminum plate with 900 lb of force to be 0.0064 in. If the cylinder rolls at 800 rpm, determine its lubrication condition with ISO VG 1000 oil at 200°F. R₁ = 64 μin (cylinder); R₁ = 32 μin (plate). 11-19 The shaft shown in Figure P11-4 was designed in Problem 10-19. For the data in the row(s) assigned from Table P11-1, and the corresponding diameter of shaft found in Problem 10-19, design suitable bearings to support the load for at least 5E8 cycles at 1200 rpm. State all assumptions. (a) (b) Using hydrodynamically lubricated bronze sleeve bearings with ON = 40, 1/ d=0.80, and a clearance ratio of 0.002 5. Using deep-groove ball bearings for a 10% failure rate. *11-20 Problem 7-20 determined the…arrow_forwardCalculate the shear force at the point D on the beam below. Take F=19 and remember that this quantity is to be used to calculate both forces and lengths. 15F A сarrow_forward"II-1 The shaft shown in Figure P11-I was designed in Problem 10-1. For the data in the row(s) assigned from Table P11-1, and the corresponding diameter of shaft found in Problem 10-1, design suitable bearings to support the load for at least 7E7 cycles at 1500 rpm. State all assumptions. (a) Using hydrodynamically lubricated bronze sleeve bearings with Ox = 20, 1/d=1.25, and a clearance ratio of 0.001 5. assume bearings act as simple supports FIGURE P11-1 Shaft Design for Problem 11-1 11-2 The shaft shown in Figure P11-2 was designed in Problem 10-2. For the data in the row(s) assigned from Table P11-1, and the corresponding diameter of shaft found in Problem 10-2, design suitable bearings to support the load for at least 3E8 cycles at 2.500 rpm. State all assumptions. (a) Using hydrodynamically lubricated bronze sleeve bearings with ON=30, 1/d=1.0, and a clearance ratio of 0.002. FIGURE P11-2 Shaft Design for Problem 11-2 Table P11-1 Data for Problems assume bearings act as simple…arrow_forwardFor the frame below, calculate the shear force at point Q. Take P=13 and note that this value is used for both the loads and the lengths of the members of the frame. 1 A Q ✗ 19 KBP 2.5P- B R C 45 degrees ✗ 1 .2P- 4PhN -P→arrow_forwardCalculate the Bending Moment at point D in the frame below. Leave your answer in Nm (newton-metres) J J A 2m 2m <2m х D 不 1m X E 5m 325 Nm 4x 400N/marrow_forwardIn the beam below, calculate the shear force at point A. Take L=78 and remember that both the loads and the dimensions are expressed in terms of L. 143 1 DX A - Li 4 LhN 14LRN/m Х B 22 3 L.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage LearningWelding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage LearningElectrical Transformers and Rotating MachinesMechanical EngineeringISBN:9781305494817Author:Stephen L. HermanPublisher:Cengage Learning
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningAutomotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage LearningUnderstanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage Learning
Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage LearningWelding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage LearningElectrical Transformers and Rotating MachinesMechanical EngineeringISBN:9781305494817Author:Stephen L. HermanPublisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningAutomotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage LearningUnderstanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage Learning