Equal area properties for parabolas Consider the parabola y = x2. Let P, Q, and R be points on the parabola with R between P and Q on the curve. Let ℓP, ℓQ, and ℓR be the lines tangent to the parabola at P, Q, and R, respectively (see figure). Let P′ be the intersection point of ℓQ and ℓR, let Q′ be the intersection point of ℓP and ℓR, and let R′ be the intersection point of ℓP and ℓQ. Prove that Area ΔPQR = 2 · Area ΔP′Q′R′ in the following cases. (In fact, the property holds for any three points on any parabola.) (Source: Mathematics Magazine 81, 2, Apr 2008)
- a. P(−a, a2), Q(a, a2), and R(0, 0), where a is a positive real number
- b. P(−a, a2), Q(b, b2), and R(0, 0), where a and b are positive real numbers
- c. P(−a, a2), Q(b, b2), and R is any point between P and Q on the curve
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Single Variable Calculus: Early Transcendentals (2nd Edition) - Standalone book
Additional Math Textbook Solutions
Elementary Statistics: Picturing the World (7th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Pre-Algebra Student Edition
A First Course in Probability (10th Edition)
College Algebra with Modeling & Visualization (5th Edition)
University Calculus: Early Transcendentals (4th Edition)
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage