Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.13, Problem 45AAP
A 0.505-in.-diameter rod of an aluminum alloy is pulled to failure in a tension test. If the final diameter of the rod at the fractured surface is 0.440 in., what is the percent reduction in area of the sample due to the test?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A square cross-section v-notched specimen of height 75 mm has each side of 10 mm has been selected to perform Charpy impact test. A v-notch of thickness 1.9 mm is made at the middle of the specimen length. Determine the cross-sectional area at notch.
answer must be in handwritten format or you can use Ms word but please do not type
m2
Chapter 6 Solutions
Foundations of Materials Science and Engineering
Ch. 6.13 - (a) How are metal alloys made by the casting...Ch. 6.13 - Why are cast metal sheet ingots hot-rolled first...Ch. 6.13 - What type of heat treatment is given to the rolled...Ch. 6.13 - Describe and illustrate the following types of...Ch. 6.13 - Describe the forging process. What is the...Ch. 6.13 - What is the difference between open-die and...Ch. 6.13 - Describe the wire-drawing process. Why is it...Ch. 6.13 - Distinguish between elastic and plastic...Ch. 6.13 - Define (a) engineering stress and strain and (b)...Ch. 6.13 - Define (a) modulus of elasticity, (b) yield...
Ch. 6.13 - (a) Define the hardness of a metal. (b) How is the...Ch. 6.13 - What types of indenters are used in (a) the...Ch. 6.13 - What are slipbands and slip lines? What causes the...Ch. 6.13 - Describe the slip mechanism that enables a metal...Ch. 6.13 - (a) Why does slip in metals usually take place on...Ch. 6.13 - Prob. 16KCPCh. 6.13 - What other types of slip planes are important...Ch. 6.13 - Define the critical resolved shear stress for a...Ch. 6.13 - Describe the deformation twinning process that...Ch. 6.13 - What is the difference between the slip and...Ch. 6.13 - Prob. 21KCPCh. 6.13 - Prob. 22KCPCh. 6.13 - What experimental evidence shows that grain...Ch. 6.13 - (a) Describe the grain shape changes that occur...Ch. 6.13 - How is the ductility of a metal normally affected...Ch. 6.13 - (a) What is solid-solution strengthening? Describe...Ch. 6.13 - What are the three main metallurgical stages that...Ch. 6.13 - Describe the microstructure of a heavily...Ch. 6.13 - Describe what occurs microscopically when a...Ch. 6.13 - When a cold-worked metal is heated into the...Ch. 6.13 - Describe what occurs microscopically when a...Ch. 6.13 - When a cold-worked metal is heated into the...Ch. 6.13 - Prob. 33KCPCh. 6.13 - Prob. 34KCPCh. 6.13 - Prob. 35KCPCh. 6.13 - Prob. 36KCPCh. 6.13 - Prob. 37KCPCh. 6.13 - Why are nanocrystalline materials stronger? Answer...Ch. 6.13 - A 70% Cu30% Zn brass sheet is 0.0955 cm thick and...Ch. 6.13 - A sheet of aluminum alloy is cold-rolled 30% to a...Ch. 6.13 - Calculate the percent cold reduction when an...Ch. 6.13 - Prob. 42AAPCh. 6.13 - What is the relationship between engineering...Ch. 6.13 - A tensile specimen of cartridge brass sheet has a...Ch. 6.13 - A 0.505-in.-diameter rod of an aluminum alloy is...Ch. 6.13 - In Figure 6.23, estimate the toughness of SAE 1340...Ch. 6.13 - The following engineering stress-strain data were...Ch. 6.13 - Prob. 49AAPCh. 6.13 - A 0.505-in.-diameter aluminum alloy test bar is...Ch. 6.13 - A 20-cm-long rod with a diameter of 0.250 cm is...Ch. 6.13 - Prob. 52AAPCh. 6.13 - Prob. 53AAPCh. 6.13 - Prob. 54AAPCh. 6.13 - Prob. 55AAPCh. 6.13 - Prob. 56AAPCh. 6.13 - A specimen of commercially pure titanium has a...Ch. 6.13 - Prob. 58AAPCh. 6.13 - Prob. 59AAPCh. 6.13 - Prob. 60AAPCh. 6.13 - Prob. 61AAPCh. 6.13 - Prob. 62AAPCh. 6.13 - Prob. 63AAPCh. 6.13 - Prob. 64AAPCh. 6.13 - Prob. 65SEPCh. 6.13 - Prob. 66SEPCh. 6.13 - A 20-mm-diameter, 350-mm-long rod made of an...Ch. 6.13 - Prob. 68SEPCh. 6.13 - Prob. 69SEPCh. 6.13 - Consider casting a cube and a sphere on the same...Ch. 6.13 - When manufacturing complex shapes using cold...Ch. 6.13 - Prob. 74SEPCh. 6.13 - Draw a generic engineering stress-strain diagram...Ch. 6.13 - (a) Draw a generic engineering stress-strain...Ch. 6.13 - Prob. 77SEPCh. 6.13 - Prob. 78SEPCh. 6.13 - Prob. 79SEPCh. 6.13 - The material for a rod of cross-sectional area...Ch. 6.13 - What do E, G, v, Ur, and toughness tell you about...Ch. 6.13 - A cylindrical component is loaded in tension until...Ch. 6.13 - Referring to Figures 6.20 and 6.21 (read the...Ch. 6.13 - (a) Show, using the definition of the Poissons...Ch. 6.13 - A one-inch cube of tempered stainless steel (alloy...Ch. 6.13 - Prob. 87SEPCh. 6.13 - Prob. 88SEPCh. 6.13 - Prob. 89SEPCh. 6.13 - Prob. 90SEPCh. 6.13 - Prob. 91SEPCh. 6.13 - Prob. 92SEPCh. 6.13 - Prob. 93SEPCh. 6.13 - Prob. 94SEPCh. 6.13 - Starting with a 2-in.-diameter rod of brass, we...Ch. 6.13 - Prob. 96SEPCh. 6.13 - Prob. 97SEPCh. 6.13 - Prob. 98SEPCh. 6.13 - The cupro-nickel substitutional solid solution...Ch. 6.13 - Prob. 100SEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Pleas very fast A square cross-section v-notched specimen of height 75 mm has each side of 13 mm has been selected to perform Charpy impact test. A v-notch of thickness 1.97 mm is made at the middle of the specimen length. Determine the cross-sectional area at notch. Cross-sectional area at notch (in mm2)arrow_forwardA square cross-section v-notched specimen of height 75 mm has each side of 11 mm has been selected to perform Charpy impact test. A v-notch of thickness 1.08 mm is made at the middle of the specimen length. Determine the cross-sectional area at notch. Cross-sectional area at notch (in mm2)arrow_forwardQuestion A cylindrical specimen of metal having a diameter of 12.88 mm and a gauge length of 63.50 mm is tested using a tensile testing machine. The elongation measurement are recorded in Table 3. nPlot the stress-strain curve on the graph paper provided based on data in Table 3 Based on the stress-strain curved plotted in (i): Compute the modulus of elasticity Determine the yield strength at a strain offset of 0.002. Determine the tensile strength Determine the ductility in percent elongation and percent area reduction Table 3: Load-elongation readings for a metal specimen Jadual 3: Bacaan beban pemanjangan untuk statu spesimen logam) Load (N) Elongation (mm) 1380 0.03 2780 0.06 5630 0.12 7430 0.2 8140 0.25 9870 0.64 12850 1.91 14100 3.18 14340 4.45 13830 5.72 12500 6.99 Fracturearrow_forward
- The brass has a shear modulus (G) of 40 GPa. In the torsion test calculated results, (G) was found to be 37 830 MPa. What is the percentage of errors in the experiment? Select one: a. 0.54% O b. 5.425% c. 0.05425% O d. 3.779%arrow_forwardA square cross-section v-notched specimen of height 75 mm has each side of 10 mm has been selected to perform Charpy impact test. Determine the notch thickness, if the cross-sectional area at notch is 90 mm². Notch thickness (in mm)arrow_forwardThe results of a tensile test are: Diameter of the specimen Gauge length Load at limit of Proportionality Extension at the limit of Proportionality Maximum Load : 10mm :40 mm : 70kN :0.08mm. :100 kN Calculate stress at limit of proportionality and young's modulus.arrow_forward
- Please help me... Kindly give me all answers otherwise leave it question. Thank youarrow_forwardThe results of a tensile test are: Diameter of the specimen Gauge length Load at limit of Proportionality Extension at the limit of Proportionality Maximum Load : 10mm :40 mm :80kN : 0.06mm. :100 kN Calculate ultimate tensile stress and young's modulus.arrow_forwardThe following data are obtained from a tensile test of a copper specimen. - The load at the yield point is 158 kN. - Length of the specimen is 26 mm. - The yield strength is 75 kN/mm?. - The percentage of elongation is 40 %. Determine the following (v) Final diameter if the percentage of reduction in area is 21 %. Final Area of the Specimen at Fracture (in mm) Final Diameter of the Specimen after Fracture (in mm)arrow_forward
- Hello, I hope you are fine. I need to do this homework in Metal Engineering. I hope to get your help because I have an important homework.arrow_forwardIf we want to measure the stress of a flat non-uniform component, what should we pay attention to before the measurement?arrow_forwardIf a specimen percentage elongation is observed to be 30%. The original length of the specimen is 10 cm. Calculate the final length of the specimen at the fracture. a. 13 mm b. 1.3 mm c. 1300 mm d. 130 mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY