
Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.13, Problem 13KCP
What are slipbands and slip lines? What causes the formation of slipbands on a metal surface?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
For the walking-beam mechanism shown in Figure 3, find and plot the x and y coordinates of the
position of the coupler point P for one complete revolution of the crank O2A. Use the coordinate
system shown in Figure 3. Hint: Calculate them first with respect to the ground link 0204 and
then transform them into the global XY coordinate system.
y
-1.75
Ꮎ
Ꮎ
4
= 2.33
0242.22
L4
x
AP = 3.06
L2 = 1.0
W2
31°
B
03 L3 = 2.06
P
1
8
5
.06
6
7
P'
The link lengths, gear ratio (2), phase angle (Ø), and the value of 02 for some geared five bar
linkages are defined in Table 2. The linkage configuration and terminology are shown in Figure
2. For the rows assigned, find all possible solutions for angles 03 and 04 by the vector loop
method. Show your work in details: vector loop, vector equations, solution procedure.
Table 2
Row
Link 1 Link 2
Link 3
Link 4
Link 5
λ
Φ
Ө
a
6
1
7
9
4
2
30°
60°
P
y 4
YA
B
b
R4
R3
YA
A
Gear ratio:
a
02
d
05
r5
R5
R2
Phase angle: = 0₂-202
R1
05
02
r2
Figure 2.
04
X
Problem 4
A .025 lb bullet C is fired at end B of the 15-lb slender bar AB. The
bar is initially at rest, and the initial velocity of the bullet is 1500 ft/s
as shown. Assuming that the bullet becomes embedded in the bar,
find (a) the angular velocity @2 of the bar immediately after impact,
and (b) the percentage loss of kinetic energy as a result of the impact.
(c) After the impact, does the bar swing up 90° and reach the
horizontal? If it does, what is its angular velocity at this point?
Answers: (a). @2=1.6 rad/s; (b). 99.6% loss
=
(c). Ah2 0.212 ft. The bar does not reach horizontal.
y
X
4 ft
15 lb
V₁
1500 ft/s
0.025 lb
C
30°7
B
A
Chapter 6 Solutions
Foundations of Materials Science and Engineering
Ch. 6.13 - (a) How are metal alloys made by the casting...Ch. 6.13 - Why are cast metal sheet ingots hot-rolled first...Ch. 6.13 - What type of heat treatment is given to the rolled...Ch. 6.13 - Describe and illustrate the following types of...Ch. 6.13 - Describe the forging process. What is the...Ch. 6.13 - What is the difference between open-die and...Ch. 6.13 - Describe the wire-drawing process. Why is it...Ch. 6.13 - Distinguish between elastic and plastic...Ch. 6.13 - Define (a) engineering stress and strain and (b)...Ch. 6.13 - Define (a) modulus of elasticity, (b) yield...
Ch. 6.13 - (a) Define the hardness of a metal. (b) How is the...Ch. 6.13 - What types of indenters are used in (a) the...Ch. 6.13 - What are slipbands and slip lines? What causes the...Ch. 6.13 - Describe the slip mechanism that enables a metal...Ch. 6.13 - (a) Why does slip in metals usually take place on...Ch. 6.13 - Prob. 16KCPCh. 6.13 - What other types of slip planes are important...Ch. 6.13 - Define the critical resolved shear stress for a...Ch. 6.13 - Describe the deformation twinning process that...Ch. 6.13 - What is the difference between the slip and...Ch. 6.13 - Prob. 21KCPCh. 6.13 - Prob. 22KCPCh. 6.13 - What experimental evidence shows that grain...Ch. 6.13 - (a) Describe the grain shape changes that occur...Ch. 6.13 - How is the ductility of a metal normally affected...Ch. 6.13 - (a) What is solid-solution strengthening? Describe...Ch. 6.13 - What are the three main metallurgical stages that...Ch. 6.13 - Describe the microstructure of a heavily...Ch. 6.13 - Describe what occurs microscopically when a...Ch. 6.13 - When a cold-worked metal is heated into the...Ch. 6.13 - Describe what occurs microscopically when a...Ch. 6.13 - When a cold-worked metal is heated into the...Ch. 6.13 - Prob. 33KCPCh. 6.13 - Prob. 34KCPCh. 6.13 - Prob. 35KCPCh. 6.13 - Prob. 36KCPCh. 6.13 - Prob. 37KCPCh. 6.13 - Why are nanocrystalline materials stronger? Answer...Ch. 6.13 - A 70% Cu30% Zn brass sheet is 0.0955 cm thick and...Ch. 6.13 - A sheet of aluminum alloy is cold-rolled 30% to a...Ch. 6.13 - Calculate the percent cold reduction when an...Ch. 6.13 - Prob. 42AAPCh. 6.13 - What is the relationship between engineering...Ch. 6.13 - A tensile specimen of cartridge brass sheet has a...Ch. 6.13 - A 0.505-in.-diameter rod of an aluminum alloy is...Ch. 6.13 - In Figure 6.23, estimate the toughness of SAE 1340...Ch. 6.13 - The following engineering stress-strain data were...Ch. 6.13 - Prob. 49AAPCh. 6.13 - A 0.505-in.-diameter aluminum alloy test bar is...Ch. 6.13 - A 20-cm-long rod with a diameter of 0.250 cm is...Ch. 6.13 - Prob. 52AAPCh. 6.13 - Prob. 53AAPCh. 6.13 - Prob. 54AAPCh. 6.13 - Prob. 55AAPCh. 6.13 - Prob. 56AAPCh. 6.13 - A specimen of commercially pure titanium has a...Ch. 6.13 - Prob. 58AAPCh. 6.13 - Prob. 59AAPCh. 6.13 - Prob. 60AAPCh. 6.13 - Prob. 61AAPCh. 6.13 - Prob. 62AAPCh. 6.13 - Prob. 63AAPCh. 6.13 - Prob. 64AAPCh. 6.13 - Prob. 65SEPCh. 6.13 - Prob. 66SEPCh. 6.13 - A 20-mm-diameter, 350-mm-long rod made of an...Ch. 6.13 - Prob. 68SEPCh. 6.13 - Prob. 69SEPCh. 6.13 - Consider casting a cube and a sphere on the same...Ch. 6.13 - When manufacturing complex shapes using cold...Ch. 6.13 - Prob. 74SEPCh. 6.13 - Draw a generic engineering stress-strain diagram...Ch. 6.13 - (a) Draw a generic engineering stress-strain...Ch. 6.13 - Prob. 77SEPCh. 6.13 - Prob. 78SEPCh. 6.13 - Prob. 79SEPCh. 6.13 - The material for a rod of cross-sectional area...Ch. 6.13 - What do E, G, v, Ur, and toughness tell you about...Ch. 6.13 - A cylindrical component is loaded in tension until...Ch. 6.13 - Referring to Figures 6.20 and 6.21 (read the...Ch. 6.13 - (a) Show, using the definition of the Poissons...Ch. 6.13 - A one-inch cube of tempered stainless steel (alloy...Ch. 6.13 - Prob. 87SEPCh. 6.13 - Prob. 88SEPCh. 6.13 - Prob. 89SEPCh. 6.13 - Prob. 90SEPCh. 6.13 - Prob. 91SEPCh. 6.13 - Prob. 92SEPCh. 6.13 - Prob. 93SEPCh. 6.13 - Prob. 94SEPCh. 6.13 - Starting with a 2-in.-diameter rod of brass, we...Ch. 6.13 - Prob. 96SEPCh. 6.13 - Prob. 97SEPCh. 6.13 - Prob. 98SEPCh. 6.13 - The cupro-nickel substitutional solid solution...Ch. 6.13 - Prob. 100SEP
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Comprehension Check 7-14
The power absorbed by a resistor can be given by P = I2R, where P is power in units of...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
CONCEPT QUESTIONS
15.CQ3 The ball rolls without slipping on the fixed surface as shown. What is the direction ...
Vector Mechanics for Engineers: Statics and Dynamics
The solid steel shaft AC has a diameter of 25 mm and is supported by smooth bearings at D and E. It is coupled ...
Mechanics of Materials (10th Edition)
This optional Google account security feature sends you a message with a code that you must enter, in addition ...
SURVEY OF OPERATING SYSTEMS
Why is the study of database technology important?
Database Concepts (8th Edition)
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- subject: combustion please include complete solution, no rounding off, with diagram/explanation etc. In a joule cycle, intake of the compressor is 40,000 cfm at 0.3 psig and 90 deg F. The compression ratio is 6.0 and the inlet temperature at the turbine portion is 1900R while at the exit, it is 15 psi. Calculate for the back work ratio in percent.arrow_forwardsubject: combustion please include complete solution, no rounding off, with diagram/explanation etc. A gasoline engine, utilizing cold air, recorded a work of 431 BTU/lb at a maximum temperature of 3,273 K and 1112 deg F temperature at the beginning of constant volume heat addition. What is the compression ratio?arrow_forwardsubject: combustion please do step by step solution and no rounding off, complete solution with diagram/explanation if needed etc. thank you! Air enters the compressor at 101,320 Pascals, 305.15K, and leaves at a pressure of 0.808MPa. The air is heated to 990.15K in the combustion chamber. For a net output of 2,125,000 Watts, find the rate of flow of air per second.arrow_forward
- The link lengths and the value of 2 and offset for some fourbar crank-slide linkages are defined in Table 1. The linkage configuration and terminology are shown in Figure 1. For the rows assigned, find (a) all possible solutions for angle & and slider position d by vector loop method. (b) the transmission angle corresponding to angle 03. (Hint: Treat the vector R4 as virtual rocker) Show your work in details: vector loop, vector equations, solution procedure. Table 1 Row Link 2 Link 3 Offset Ө a 1.4 4 1 45° b 3 8 2 -30° C 5 20 -5 225° 03 slider axis B X offset Link 2 A R3 Link 3 R4 04 R2 02 R1 d Figure 1. Xarrow_forward4. Two links made of heat treated 6061 aluminum (Sy = 276 MPa, Sys = 160 MPa) are pinned together using a steel dowel pin (Sy = 1398 MPa, Sys = 806 MPa) as shown below. The links are to support a load P with a factor of safety of at least 2.0. Determine if the link will fail first by tearout, direct shear of the pin, bearing stress on the link, or tensile stress at section AA. (Hint: find the load P for each case and choose the case that gives the smallest load.) P 8 mm P 8 mm ¡+A 3 mm →A 10 mm Parrow_forward1. For a feature other than a sphere, circularity is where: A. The axis is a straight line B. The modifier is specified with a size dimension C. All points of the surface intersected by any plane perpendicular to an axis or spine (curved line) are equidistant from that axis or spine D. All points of the surface intersected by any plane passing through a common center are equidistant from that center 2. What type of variation is limited by a circularity toler- ance zone? A. Ovality B. Tapering C. Bending D. Warping 3. How does the Rule #1 boundary affect the application of a circularity tolerance? A. The modifier must be used. B. The feature control frame must be placed next to the size dimension. C. The circularity tolerance value must be less than the limits of size tolerance. D. Circularity cannot be applied where a Rule #1 boundary exists. 4. A circularity tolerance may use a modifier. A. Ø B. F C. M D. ℗ 5. A real-world application for a circularity tolerance is: A. Assembly (i.e.,…arrow_forward
- 3. A steel bar is pinned to a vertical support column by a 10 mm diameter hardened dowel pin, Figure 1. For P = 7500 N, find: a. the shear stress in the pin, b. the direct bearing stress on the hole in the bar, c. the minimum value of d to prevent tearout failure if the steel bar has a shear strength of 175 MPa. support column pin bar thickness of bar = 8 mm h d 150 mmarrow_forwardA press that delivers 115 strokes per minute, each stroke providing a force of 7826 N throughout a distance of 18 mm. The press efficiency is 90% and is driven by a 1749-rpm motor. Determine average torque that must be provided by the motor in the units of N-m.arrow_forward·3) find the force (P) for the figures (1) and (2) 15cm 10cm 15 h=10mm h2=6mm // Call = 90 N/2 P Agate Fig (i) Ans: 1)P=112614N 2) P=1956.5 N 25cm 25 cm الفترة أو الحجم تمر بالتي عثر اكو تورشن (ک Fig (2) h₁ = 10mm 42=6mm Cmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY