Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.11, Problem 171FEP
A window air conditioner that consumes 1 kW of electricity when running and has a coefficient of performance of 3 is placed in the middle of a room and is plugged in. The rate of cooling or heating this air conditioner will provide to the air in the room when running is
- (a) 3 kJ/s, cooling
- (b) 1 kJ/s, cooling
- (c) 0.33 kJ/s, heating
- (d) 1 kJ/s, heating
- (e) 3 kJ/s, heating
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
5. Consider a building whose annual air-conditioning load is estimated to be 120,000 kWh in an
area where the unit cost of electricity is $0.10/kwh. Two air conditioners are considered for the
building. Air conditioner A has a seasonal average COP of 3.2 and costs $5500 to purchase and
install. Air conditioner B has a seasonal average COP of 5.0 and costs $7000 to purchase and
install. If all else are equal, determine which air conditioner is a better buy
120,000 kWh
Air cond. A
Air cond. B
'COP=5.0
COP 3.2
House
120,000 kWh
An air conditioner on a summer day removes heat steadily from a house at a rate of 750 kJ/min while drawing electric power at a rate of 5.25 kW. Please answer the following. a. Create a schematic representation of the air conditioning system under consideration. b. Determine the COP of this air conditioner and the rate of heat transfer to the outside air. c. Now winter has come, and the owner decides to use the equipment as heat pump to warm the house. Because the house is not perfectly insulated, and the outside temperature is 0°C the estimated rate of heat transfer loss rate from the house to the surroundings is equal to 1200 kJ/min. Will the air conditioning unit operating as heat pump satisfy the required heating if the electrical power drawn is 5.25 kW? Explain how you arrived at the answer. d. If the heat pump would operate as a Carnot Heat Pump and the indoor temperature is 25°C while the outside temperature is 0°C, compute the COP.
A heat pump maintains a dwelling at 68°F. When operating steadily, the power input to the heat pump is 5 hp, and the heat pump
receives energy by heat transfer from 55°F well water at a rate of 500 Btu/min.
(a) Determine the coefficient of performance.
(b) Evaluating electricity at $0.18 per kWh, determine the cost of electricity in a month when the heat pump operates for 300 hours.
Part A
Determine the coefficient of performance.
y =
i
Chapter 6 Solutions
Thermodynamics: An Engineering Approach
Ch. 6.11 - Describe an imaginary process that violates both...Ch. 6.11 - Describe an imaginary process that satisfies the...Ch. 6.11 - Describe an imaginary process that satisfies the...Ch. 6.11 - An experimentalist claims to have raised the...Ch. 6.11 - Prob. 5PCh. 6.11 - Consider the process of baking potatoes in a...Ch. 6.11 - What are the characteristics of all heat engines?Ch. 6.11 - What is the KelvinPlanck expression of the second...Ch. 6.11 - Is it possible for a heat engine to operate...Ch. 6.11 - Baseboard heaters are basically electric...
Ch. 6.11 - Does a heat engine that has a thermal efficiency...Ch. 6.11 - In the absence of any friction and other...Ch. 6.11 - Are the efficiencies of all the work-producing...Ch. 6.11 - Consider a pan of water being heated (a) by...Ch. 6.11 - Prob. 15PCh. 6.11 - Prob. 16PCh. 6.11 - A heat engine has a heat input of 3 104 Btu/h and...Ch. 6.11 - Prob. 18PCh. 6.11 - A 600-MW steam power plant, which is cooled by a...Ch. 6.11 - Prob. 20PCh. 6.11 - A heat engine with a thermal efficiency of 45...Ch. 6.11 - A steam power plant with a power output of 150 MW...Ch. 6.11 - An automobile engine consumes fuel at a rate of 22...Ch. 6.11 - Prob. 24PCh. 6.11 - Prob. 25PCh. 6.11 - A coal-burning steam power plant produces a net...Ch. 6.11 - An Ocean Thermal Energy Conversion (OTEC) power...Ch. 6.11 - What is the difference between a refrigerator and...Ch. 6.11 - Prob. 29PCh. 6.11 - In a refrigerator, heat is transferred from a...Ch. 6.11 - A heat pump is a device that absorbs energy from...Ch. 6.11 - Define the coefficient of performance of a...Ch. 6.11 - Define the coefficient of performance of a heat...Ch. 6.11 - Prob. 34PCh. 6.11 - A refrigerator has a COP of 1.5. That is, the...Ch. 6.11 - What is the Clausius expression of the second law...Ch. 6.11 - Show that the KelvinPlanck and the Clausius...Ch. 6.11 - Prob. 38PCh. 6.11 - Determine the COP of a heat pump that supplies...Ch. 6.11 - Prob. 40PCh. 6.11 - Prob. 41PCh. 6.11 - 6–42 An air conditioner removes heat steadily from...Ch. 6.11 - 6–43 A food department is kept at –12°C by a...Ch. 6.11 - A household refrigerator that has a power input of...Ch. 6.11 - When a man returns to his well-sealed house on a...Ch. 6.11 - Prob. 47PCh. 6.11 - Prob. 48PCh. 6.11 - 6–49 A heat pump is used to maintain a house at a...Ch. 6.11 - Prob. 50PCh. 6.11 - A household refrigerator runs one-fourth of the...Ch. 6.11 - Prob. 52PCh. 6.11 - Consider an office room that is being cooled...Ch. 6.11 - Prob. 54PCh. 6.11 - Refrigerant-134a enters the condenser of a...Ch. 6.11 - An inventor claims to have developed a resistance...Ch. 6.11 - Prob. 57PCh. 6.11 - A cold canned drink is left in a warmer room where...Ch. 6.11 - A block slides down an inclined plane with...Ch. 6.11 - Prob. 60PCh. 6.11 - Show that processes that use work for mixing are...Ch. 6.11 - Why does a nonquasi-equilibrium compression...Ch. 6.11 - Prob. 63PCh. 6.11 - Prob. 64PCh. 6.11 - Prob. 65PCh. 6.11 - Why are engineers interested in reversible...Ch. 6.11 - What are the four processes that make up the...Ch. 6.11 - Prob. 68PCh. 6.11 - Prob. 69PCh. 6.11 - Prob. 70PCh. 6.11 - Somebody claims to have developed a new reversible...Ch. 6.11 - Is there any way to increase the efficiency of a...Ch. 6.11 - Consider two actual power plants operating with...Ch. 6.11 - Prob. 74PCh. 6.11 - Prob. 75PCh. 6.11 - 6–76 A Carnot heat engine receives 650 kJ of heat...Ch. 6.11 - A Carnot heat engine operates between a source at...Ch. 6.11 - A heat engine operates between a source at 477C...Ch. 6.11 - Prob. 80PCh. 6.11 - Prob. 81PCh. 6.11 - In tropical climates, the water near the surface...Ch. 6.11 - 6–83 A well-established way of power generation...Ch. 6.11 - Prob. 84PCh. 6.11 - Prob. 85PCh. 6.11 - How can we increase the COP of a Carnot...Ch. 6.11 - In an effort to conserve energy in a heat-engine...Ch. 6.11 - Prob. 88PCh. 6.11 - Prob. 89PCh. 6.11 - 6–90 During an experiment conducted in a room at...Ch. 6.11 - Prob. 91PCh. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - Prob. 93PCh. 6.11 - Prob. 94PCh. 6.11 - Prob. 95PCh. 6.11 - Prob. 96PCh. 6.11 - 6–97 A heat pump is used to maintain a house at...Ch. 6.11 - Prob. 98PCh. 6.11 - Prob. 99PCh. 6.11 - Prob. 100PCh. 6.11 - A commercial refrigerator with refrigerant-134a as...Ch. 6.11 - Prob. 102PCh. 6.11 - A heat pump is to be used for heating a house in...Ch. 6.11 - A Carnot heat pump is to be used to heat a house...Ch. 6.11 - A Carnot heat engine receives heat from a...Ch. 6.11 - Prob. 106PCh. 6.11 - Prob. 107PCh. 6.11 - Prob. 108PCh. 6.11 - Derive an expression for the COP of a completely...Ch. 6.11 - Prob. 110PCh. 6.11 - Prob. 111PCh. 6.11 - Prob. 112PCh. 6.11 - Prob. 113PCh. 6.11 - Someone proposes that the entire...Ch. 6.11 - Prob. 115PCh. 6.11 - Prob. 116PCh. 6.11 - Prob. 117PCh. 6.11 - It is often stated that the refrigerator door...Ch. 6.11 - Prob. 119RPCh. 6.11 - A Carnot heat pump is used to heat and maintain a...Ch. 6.11 - Prob. 121RPCh. 6.11 - Prob. 122RPCh. 6.11 - A refrigeration system uses a water-cooled...Ch. 6.11 - A heat pump with a COP of 2.8 is used to heat an...Ch. 6.11 - Prob. 125RPCh. 6.11 - Consider a Carnot refrigeration cycle executed in...Ch. 6.11 - Consider two Carnot heat engines operating in...Ch. 6.11 - Prob. 129RPCh. 6.11 - A heat engine operates between two reservoirs at...Ch. 6.11 - Prob. 132RPCh. 6.11 - An old gas turbine has an efficiency of 21 percent...Ch. 6.11 - Prob. 134RPCh. 6.11 - Prob. 135RPCh. 6.11 - Prob. 136RPCh. 6.11 - Prob. 137RPCh. 6.11 - Prob. 138RPCh. 6.11 - Prob. 139RPCh. 6.11 - A refrigeration system is to cool bread loaves...Ch. 6.11 - The drinking water needs of a production facility...Ch. 6.11 - Prob. 143RPCh. 6.11 - Prob. 145RPCh. 6.11 - Prob. 146RPCh. 6.11 - Prob. 147RPCh. 6.11 - Prob. 148RPCh. 6.11 - A heat pump with refrigerant-134a as the working...Ch. 6.11 - Prob. 150RPCh. 6.11 - Prob. 151RPCh. 6.11 - Prob. 153RPCh. 6.11 - Prob. 154RPCh. 6.11 - Prob. 155RPCh. 6.11 - A 2.4-m-high 200-m2 house is maintained at 22C by...Ch. 6.11 - Prob. 157FEPCh. 6.11 - Prob. 158FEPCh. 6.11 - A heat pump is absorbing heat from the cold...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - A heat engine receives heat from a source at 1000C...Ch. 6.11 - Prob. 162FEPCh. 6.11 - A refrigeration cycle is executed with R-134a...Ch. 6.11 - A heat pump with a COP of 3.2 is used to heat a...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - Prob. 167FEPCh. 6.11 - Two Carnot heat engines are operating in series...Ch. 6.11 - Consider a Carnot refrigerator and a Carnot heat...Ch. 6.11 - A typical new household refrigerator consumes...Ch. 6.11 - A window air conditioner that consumes 1 kW of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The operating condition for the single compressor in a household refrigerator is the lowest box temperature, which is typically A. 0F B. -20F C. 20F D. 40Farrow_forward(c) Consider a house whose annual air-conditioning load is estimated to be 120,000 kWh. The unit cost of electricity is RM0.218/kWh. Two air- conditioners are considered. Air-conditioner Daekon has a seasonal average COP of 3.3 and cost RM3299 to purchase and RM200 to install. Air conditioner Panasini has a seasonal average COP of 5.0 and cost RM6199 to purchase and RM300 to install. Each air-conditioner requires RM50 service fee each year. All else being equal, determine which air-conditioner is a better buy in a long run.arrow_forward1. What is the difference between Carnot efficiency and Actual efficiency? 2. What processes occur in a heat engine?arrow_forward
- (c) An air conditioner in a house removes heat steadily at a rate of 750 kJ/min while drawing electric power at a rate of 6 kW. Determine: (i) The COP of this air conditioner and; (ii) The rate of heat transfer to the outside air.arrow_forwardA window-mounted air conditioner removes 2.1 kJ from the inside of a home using 1.75 kJ work input. What is its coefficient of performance? Note: thermodynamically, and air conditioner is the same thing as a refrigerator - it makes the inside of a container (house, refrigerator) colder.arrow_forwardAn air conditioner is a device used to cool the inside of a home. It is, in essence, a refrigerator in which mechanical work is done and heat removed from the (cooler) inside and rejected to the (warmer) outside. A home air conditioner operating on a reversible Carnot cycle between the inside, absolute temperature T2, and the outside, absolute tempera- ture T1 > T2, consumes P joules/sec from the power lines when operating continuously. (a) In one second, the air conditioner absorbs Q2 joules from the house and rejects Q1 joules outdoors. Develop a formula for the efficiency ratio Q2/P in terms of T1 and T2. (b) Heat leakage into the house follows Newton's law Q = A(T, – T2). Develop a formula for T, in terms of T1, P, and A for continuous operation of the air conditioner under constant outside temperature T and uniform (in space) inside temperature T2. (c) The air conditioner is controlled by the usual on-off thermostat and it is observed that when the thermostat set at 20°C and an…arrow_forward
- As shown in the figure, an air conditioner operating at steady state maintains a dwelling at 70°F on a day when the outside temperature is 90°F. The rate of heat transfer into the dwelling through the walls and roof is 30,000 Btu/h and the net power input to the air conditioner compressor is 3 hp. Determine a. the coefficient of performance for the air conditioner b. power input required in hp c. coefficient of performance for a reversible air conditioner providing the same cooling effect while operating between the same cold and hot temperatures.arrow_forwardAn air conditioner operating at steady state maintains a dwelling at 20 C on a day when the outside temperature is 35 C. Energy is removed by heat transfer from the dwelling at a rate of 2800 J/s while the air conditioner's power input is 0.8 kw. (a) Determine the coefficient of performance of the air conditioner. (b) Determine the power input required if it was a Carnot refrigerator. English (United States) 目 98%arrow_forwardA heat pump with a coefficient of performance of 3.5 provides energy at an average rate of 70,000 kJ/h to maintain a building at 20 deg C on a day when the outside temperature is -5 deg C. If electricity costs 8.5 cents per kWh, (a) determine the actual operating cost and the minimum theoretical operating cost, each in $/day. (b) compare the results of part (a) with the cost of electrical-resistance heating.arrow_forward
- Kelvin-Planck statement defines the Second law of thermodynamics as a. It is impossible to construct a machine that will operate in a cycle, extract heat from a reservoir, and do an equivalent amount of work on the surroundings. b. It is impossible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower-temperature body to a higher-temperature body. c. It is possible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower-temperature body to a higher-temperature body. d. It is possible to construct a machine that will operate in a cycle, extract heat from a reservoir, and do an equivalent amount of work on the surroundings.arrow_forwardan ammonia refrigeration cycle operates at 616 kpa suction pressure and 1737 kpa condenser pressure, compressor clearance of 5%, refrigeration capacity of 120 kw, compressor efficiency of 80%, mechanical efficiency of 75% and actual volumetric efficiency of 70. determine (a) actual work (b) ideal cop (c) mass flow rate of ammonia (d) indicated work (e) brake work (f) volumetericarrow_forwardAn A/C unit removes heat from the house at a rate of 1 MJ/min. If the required power input to this A/C unit is 6 kW, determine: a. COP of the air-conditioning unit. b. The rate of heat rejection to the outside air, in kW.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Hydronics Step by Step; Author: Taco Comfort Solutions;https://www.youtube.com/watch?v=-XGNl9kppR8;License: Standard Youtube License