Concept explainers
A Carnot heat pump is to be used to heat a house and maintain it at 25°C in winter. On a day when the average outdoor temperature remains at about 2°C, the house is estimated to lose heat at a rate of 55,000 kJ/h. If the heat pump consumes 4.8 kW of power while operating, determine (a) how long the heat pump ran on that day; (b) the total heating costs, assuming an average price of $0.11/kWh for electricity; and (c) the heating cost for the same day if resistance heating is used instead of a heat pump.
FIGURE P6–111
(a)
The actual running time of the heat pump in a day.
Answer to Problem 111P
The actual running time of the heat pump in a day is
Explanation of Solution
Determine the coefficient of performance of the Carnot heat pump depends on the temperature limits in the cycle.
Here, the temperature inside the house is
Determine the total amount of heat lost by the house.
Here, the rate of heat gain per unit degree is
Determine the work input of a Carnot heat pump.
Here the power input required by heat pump is
Determine amount of time the heat pump ran.
Here, the rate of work input of a Carnot heat pump is
Conclusion:
Substitute
Substitute
Substitute
Substitute
Thus, the actual running time of the heat pump in a day is
(b)
The total heating cost that day.
Answer to Problem 111P
The total heating cost that day is
Explanation of Solution
Determine the total heating cost that day.
Conclusion:
Substitute
Thus, the total heating cost that day is
(c)
The amount of cost if resistance heating is used instead of heat pump.
Answer to Problem 111P
The amount of cost if resistance heating is used instead of heat pump is
Explanation of Solution
Determine the amount of cost if resistance heating is used instead of heat pump.
Conclusion:
Substitute
Thus, the amount of cost if resistance heating is used instead of heat pump is
Want to see more full solutions like this?
Chapter 6 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
- A heat engine operates between a source at 478.72 C and a sink at 26.12 C. If heat is supplied to the heat engine at a steady rate of 69,585.58 kJ/min, determine the maximum power output (kW) of this heat engine.arrow_forwardb) On a winter day when the average outdoor temperature remains at about 4 ° C, the house is estimated to lose heat at a rate of 62,000 kJ / h. For this reason a Carnot heat pump is used to heat a house and maintain it at 23 ° C. If the heat pump consumes 6 kW of power while operating, determine (a) how long the heat pump ran on that day; (b) the amount of heat removed from surrounding (Q.); and (c) the total heating costs, assuming an average price of 6.5 ¢ / kWh for electricity (d) the heating cost for the day if resistance heating is used instead of a heat pump assuming an average price of 6.5 € / kWh for electricity .arrow_forwardA heat engine working with a thermal efficiency of 35% receives 2 kW of heat from a furnace. The waste heat rejected from the engine isarrow_forward
- An automotive air conditioner produces a 1-kW cooling effect while consuming 0.75 kW of power. What is the rate at which heat is rejected from this air conditioner?arrow_forwardA Carnot heat pump is to be used to heat a house and maintain it at 25°C in winter. On a day when the average outdoor temperature remains at about 2°C, the house is estimatedto lose heat at a rate of 55 000 kJ/h. If the heat pump consumes 4.8 kW of power while operating, determine: (a). how long the heat pump ran on that day(b). The total heating costs, assuming an average price of R 2.35/kWh for electricity, and(c). The heating cost for the same day if resistance heating is used instead of a heat pump.arrow_forwardA heat engine has a total heat input of 1.3 kJ and a thermal efficiency of 35 percent. How much work will it produce?arrow_forward
- (c) The structure of a house is such that it loses heat at a rate of 5400 kJ/h per °C difference between the indoors and outdoors. A heat pump that requires a power input of 6 kW is used to maintain this house temperature at 21°C. Examine the lowest outdoor temperature for which the heat pump can meet the heating requirements of this house and sketch a simple schematic diagram for the heat pump complete with the value of energy, its direction, and temperature reading of both indoors and outdoors.arrow_forwardA heat pump supplies heat energy to a house at the rate of 140,000 kJ/h when the house is maintained at 25°C. Over a period of one month, the heat pump operates for 100 hours to transfer energy from a heat source outside the house to inside the house. Consider a heat pump receiving heat from two different outside energy sources. In one application the heat pump receives heat from the outside air at 0°C. In a second application the heat pump receives heat from a lake having a water temperature of 10°C. If electricity costs $0.12/ kWh, determine the maximum amount of money saved by using the lake water rather than the outside air as the outside energy source.arrow_forwardA heat engine operates between two reservoirs at 8000 C and 200 C. One-half of the work output of the engine is used to drive a Carnot heat pump that removes heat from the cold surroundings at 20 C and transfers heat to a house maintained at 220 C. If the house is losing heat at a rate of 62,000 kJ/h, determine the minimum rate of heat supply to the heat engine required to keep the house at 220 C.arrow_forward
- heat pump with a coefficient of performance of 2.5 supplies energy to a house at a rate of 60,000 Btu/h. Determine (a) the electric pwer drawn by the heat pump and (b) the rate of heat absoption from the outside air.arrow_forwardA scientist claims to have developed a heat engine with 70% thermal efficiency when operating with thermal energy reservoirs at 700 K and 275 K. Is this claim valid? Please explain.arrow_forwardA Carnot heat pump is to be used to heat a house and maintain it at 25°C in winter. On a day when the average outdoor temperature remains at about 2°C, the house is estimated to lose heat at a rate of 55,000 kJ/h. If the heat pump consumes 4.8 kW of power while operating, determine the total heating costs, assuming an average price of $0.11/kWh for electricity.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY