
College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 9WUE
A car of mass 1 560 kg traveling east and a truck of equal mass traveling north collide and become entangled, moving as a unit at 15.0 m/s and 60.0° north of east. Find the speed of (a) the car, and (b) the truck prior to the collision. (See Section 6.4.)
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
If a proton is located on the x-axis in some coordinate system at x0 = -3.2 x 10-5 meters, what is the x-component of the Electric Field due to this proton at a position x = +3.2 x 10-5 meters and on the x axis as the y-axis is 0 giving a number of Newtons/Coulomb?
Consider a single square loop of wire of area A carrying a current I in a uniform magnetic field
of strength B. The field is pointing directly up the page in the plane of the page. The loop is
oriented so that the plane of the loop is perpendicular to the plane of the page (this means that the
normal vector for the loop is always in the plane of the page!). In the illustrations below the
magnetic field is shown in red and the current through the current loop is shown in blue. The
loop starts out in orientation (i) and rotates clockwise, through
orientations (ii) through (viii)
before returning to (i).
(i)
Ø I N - - I N -
(iii)
(iv)
(v)
(vii)
(viii)
a) [3 points] For each of the eight configurations, draw in the magnetic dipole moment vector
μ of the current loop and indicate whether the torque on the dipole due to the magnetic field
is clockwise (CW), counterclockwise (CCW), or zero. In which two orientations will the
loop experience the maximum magnitude of torque?
[Hint: Use the…
Please help with calculating the impusle, thanks!
Having calculated the impact and rebound velocities of the ping pong ball and the tennis ball calculate the rebounding impulse:
1.Measure the weight of the balls and determine their mass.
Tennis ball: 0.57 kg Ping Pong Ball: 0.00246 kg
The impulse, I, is equal to the change in momentum, Pf-Pi. Note the sign change, i.e., going down is negative and up is positive. The unit for momentum is kg-m/s. The change is momentum, impulse, is often givens the equivalent unit of N-S, Newton-Second
Chapter 6 Solutions
College Physics
Ch. 6.1 - Two masses m1 and m2, with m1 m2, have equal...Ch. 6.2 - A boy standing at one end of a floating raft that...Ch. 6.3 - A car and a large truck traveling at the same...Ch. 6.3 - An object of mass m moves to the right with a...Ch. 6.3 - A skater is using very low-friction rollerblades....Ch. 6.3 - In a perfectly inelastic one-dimensional collision...Ch. 6 - Math Review Solve the two equations mi + MVi = mf...Ch. 6 - Math Review Given the equations 507 = 147 Vf cos ...Ch. 6 - Math Review (a) Solve the equation 7.20 103 m/s =...Ch. 6 - A soccer player runs up behind a 0.450-kg soccer...
Ch. 6 - A 57.0-g tennis ball is traveling straight at a...Ch. 6 - An astronaut, of total mass 85.0 kg including her...Ch. 6 - Prob. 7WUECh. 6 - A car of mass 750 kg traveling at a velocity of 27...Ch. 6 - A car of mass 1 560 kg traveling east and a truck...Ch. 6 - Prob. 10WUECh. 6 - Prob. 11WUECh. 6 - A batter bunts a pitched baseball, blocking the...Ch. 6 - If two objects collide and one is initially at...Ch. 6 - Prob. 3CQCh. 6 - Americans will never forget the terrorist attack...Ch. 6 - A ball of clay of mass m is thrown with a speed v...Ch. 6 - A skater is standing still on a frictionless ice...Ch. 6 - A more ordinary example of conservation of...Ch. 6 - (a) If two automobiles collide, they usually do...Ch. 6 - Your physical education teacher throws you a...Ch. 6 - A large bedsheet is held vertically by two...Ch. 6 - A sharpshooter fires a rifle while standing with...Ch. 6 - An air bag inflates when a collision occurs,...Ch. 6 - Prob. 13CQCh. 6 - An open box slides across a frictionless, icy...Ch. 6 - Does a larger net force exerted on an object...Ch. 6 - Does a larger net force always produce a larger...Ch. 6 - If two particles have equal momenta, are their...Ch. 6 - Two particles of different mass start from rest....Ch. 6 - Calculate the magnitude of the linear momentum for...Ch. 6 - A high-speed photograph of a club hitting a golf...Ch. 6 - A pitcher claims he can throw a 0.145-kg baseball...Ch. 6 - A ball of mass m is thrown straight up into the...Ch. 6 - Drops of rain fall perpendicular to the roof of a...Ch. 6 - Show that the kinetic energy of a particle of mass...Ch. 6 - An object has a kinetic energy of 275 J and a...Ch. 6 - An estimated force vs. time curve for a baseball...Ch. 6 - A 0.280-kg volleyball approaches a player...Ch. 6 - A man claims he ran safely hold on to a 12.0-kg...Ch. 6 - A ball of mass 0.150 kg is dropped from rest from...Ch. 6 - A tennis player receives a shot with the ball...Ch. 6 - A car is stopped for a traffic signal. When the...Ch. 6 - A 65.0-kg basketball player jumps vertically and...Ch. 6 - The force shown in the force vs. time diagram in...Ch. 6 - A force of magnitude Fx acting in the x-direction...Ch. 6 - The forces shown in the force vs. time diagram in...Ch. 6 - A 3.00-kg steel ball strikes a massive wall at...Ch. 6 - The front 1.20 m of a 1 400-kg car is designed as...Ch. 6 - A pitcher throws a 0.14-kg baseball toward the...Ch. 6 - High-speed stroboscopic photographs show that the...Ch. 6 - A rifle with a weight of 30.0 N fires a 5.00-g...Ch. 6 - A 45.0-kg girl is standing on a 150.-kg plank. The...Ch. 6 - This is a symbolic version of Problem 23. A girl...Ch. 6 - An astronaut in her space suit has a total mass of...Ch. 6 - A 75-kg fisherman in a 125-kg boat throws a...Ch. 6 - A 65.0-kg person throws a 0.045 0-kg snowball...Ch. 6 - Prob. 28PCh. 6 - a man of mass m1 = 70.0 kg is skating at v1 = 8.00...Ch. 6 - An archer shoots an arrow toward a 3.00 102-g...Ch. 6 - Gayle runs at a speed of 4.00 m/s and dives on a...Ch. 6 - A 75.0-kg ice skater moving at 10.0 m/s crashes...Ch. 6 - A railroad car of mass 2.00 104 kg moving at 3.00...Ch. 6 - This is a symbolic version of Problem 35. A...Ch. 6 - Consider the ballistic pendulum device discussed...Ch. 6 - A car of mass m moving at a speed v1 collides and...Ch. 6 - In a Broadway performance, an 80.0-kg actor swings...Ch. 6 - Two shuffleboard disks of equal mass, one orange...Ch. 6 - A 0.030-kg bullet is fired vertically at 200 m/s...Ch. 6 - An bullet of mass m = 8.00 g is fired into a block...Ch. 6 - A 12.0-g bullet is fired horizontally into a 100-g...Ch. 6 - A 1200-kg car traveling initially with a speed of...Ch. 6 - A boy of mass mb and his girlfriend of mass mg,...Ch. 6 - A space probe, initially at rest, undergoes an...Ch. 6 - A 25.0-g object moving to the right at 20.0 cm/s...Ch. 6 - A billiard ball rolling across a table at 1.50 m/s...Ch. 6 - A 90.0-kg fullback running cast with a speed of...Ch. 6 - Identical twins, each with mass 55.0 kg, are on...Ch. 6 - A 2.00 1O3-kg car moving cast at 10.0 m/s...Ch. 6 - Two automobiles of equal mass approach an...Ch. 6 - A billiard ball moving at 5.00 m/s strikes a...Ch. 6 - In research in cardiology and exercise physiology,...Ch. 6 - Most of us know intuitively that in a head-on...Ch. 6 - Consider a frictionless track as shown in Figure...Ch. 6 - A 2.0-g particle moving at 8.0 m/s makes a...Ch. 6 - A bullet of mass m and speed v passes completely...Ch. 6 - Two objects of masses m1 = 0.56 kg m2 = 0.88 kg...Ch. 6 - A 0.400-kg blue bead slides on a frictionless,...Ch. 6 - A 730-N man stands in the middle of a frozen pond...Ch. 6 - An unstable nucleus of muss 1.7 1026 kg,...Ch. 6 - Two blocks of masses m1 and m2 approach each other...Ch. 6 - Two blocks of masses m1 = 2.00 kg and m2 = 4.00 kg...Ch. 6 - A block with mass m1 = 0.500 kg is released from...Ch. 6 - Two objects of masses m and 3m are moving toward...Ch. 6 - A small block of mass m1 = 0.500 kg is released...Ch. 6 - A cue ball traveling at 4.00 m/s makes a glancing,...Ch. 6 - A cannon is rigidly attached to a carriage, which...Ch. 6 - Prob. 68APCh. 6 - A neutron in a reactor makes an elastic head-on...Ch. 6 - Two blocks collide on a frictionless surface....Ch. 6 - (a) A car traveling due east strikes a car...Ch. 6 - A 60-kg soccer player jumps vertically upwards and...Ch. 6 - A tennis ball of mass 57.0 g is held just above a...Ch. 6 - A 20.0-kg toboggan with 70.0-kg driver is sliding...Ch. 6 - Measuring the speed of a bullet. A bullet of mass...Ch. 6 - A flying squid (family Ommastrephidae) is able to...Ch. 6 - A 0.30-kg puck, initially at rest on a...Ch. 6 - A wooden block of mass M rests on a table over a...Ch. 6 - A 1.25-kg wooden block rests on a table over a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 5. Three blocks, each with mass m, are connected by strings and are pulled to the right along the surface of a frictionless table with a constant force of magnitude F. The tensions in the strings connecting the masses are T1 and T2 as shown. m T1 T2 F m m How does the magnitude of tension T₁ compare to F? A) T₁ = F B) T₁ = (1/2)F C) T₁ = (1/3)F D) T₁ = 2F E) T₁ = 3Farrow_forwardUsing Coulombs Law, what is the magnitude of the electrical force between two protons located 1 meter apart from each other in Newtons?arrow_forwardCalculate the magnitude of the gravitational force between 2 protons located 1 meter apart from each other in Newtons using Newton's Law of Universal Gravitation.arrow_forward
- If the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere if there is a distance 25 cm from the person to the sphere using Coulomb's Law to calculate the electrical force. Give your answer as the number of Coulombs (with no unit label, as usual).arrow_forwardA balloon is rubbed on a sweater, giving the balloon a negative charge by adding an extra 3.9 x 107 electrons compared to its neutral state. What is the magnitude of the net charge on the balloon, in Coulombs?arrow_forwardA ping pong ball and a tennis ball are dropped and there is a very small gap between them when the tennis ball hits the floor. Indicate the directions of the momentums of the ping pong ball and the tennis ball after the tennis ball collides with the floor, but before the balls collide with each other. (Drawing a diagram may be helpful.)arrow_forward
- Describe how the momentum of a single ball changes as it free falls from a height of approximately 1 m, collides with a hard floor, and rebounds.arrow_forwardIf the answer is 2.8, -2.8 or -8.4, it is not CORRECTarrow_forwardThree blocks, light connecting ropes, and a light frictionless pulley comprise a system, as shown in the figure. An external force of magnitude P is applied downward on block A, causing block A to accelerate downward at a constant 2.5 m/s2. The tension in the rope connecting block B and block C is equal to 60 N. (a) What is the magnitude of the force P? (b) What is the mass of block C?arrow_forward
- Current Attempt in Progress In the figure what is the net electric potential at point P due to the four particles if V = 0 at infinity, q = 2.12 fC, and d = 1.75 cm? d Number MI Units +qarrow_forwardCurrent Attempt in Progress In the figure what is the net electric potential at point P due to the four particles if V = 0 at infinity, q = 2.12 fC, and d = 1.75 cm? d Number MI Units +qarrow_forwardA 0.500 kg sphere moving with a velocity given by (2.00î – 2.60ĵ + 1.00k) m/s strikes another sphere of mass 1.50 kg moving with an initial velocity of (−1.00î + 2.00ĵ – 3.20k) m/s. (a) The velocity of the 0.500 kg sphere after the collision is (-0.90î + 3.00ĵ − 8.00k) m/s. Find the final velocity of the 1.50 kg sphere. R = m/s Identify the kind of collision (elastic, inelastic, or perfectly inelastic). ○ elastic O inelastic O perfectly inelastic (b) Now assume the velocity of the 0.500 kg sphere after the collision is (-0.250 + 0.850ĵ - 2.15k) m/s. Find the final velocity of the 1.50 kg sphere. ✓ = m/s Identify the kind of collision. O elastic O inelastic O perfectly inelastic (c) Take the velocity of the 0.500 kg sphere after the collision as (−1.00ỉ + 3.40] + ak) m/s. Find the value of a and the velocity of the 1.50 kg sphere after an elastic collision. (Two values of a are possible, a positive value and a negative value. Report each with their corresponding final velocities.) a…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY