A tennis ball of mass 57.0 g is held just above a basketball of mass 590 g. With their centers vertically aligned, both balls are released from rest at the same time, falling through a distance of 1.20 m, as shown in Figure P6.45. (a) Find the magnitude of the basketball’s velocity the instant before the basketball reaches the ground. (b) Assume that an elastic collision with the ground instantaneously reverses the velocity of the basketball so that it collides with the tennis ball just above it. To what height does the tennis ball rebound? Figure P6.45
A tennis ball of mass 57.0 g is held just above a basketball of mass 590 g. With their centers vertically aligned, both balls are released from rest at the same time, falling through a distance of 1.20 m, as shown in Figure P6.45. (a) Find the magnitude of the basketball’s velocity the instant before the basketball reaches the ground. (b) Assume that an elastic collision with the ground instantaneously reverses the velocity of the basketball so that it collides with the tennis ball just above it. To what height does the tennis ball rebound? Figure P6.45
Solution Summary: The author determines the magnitude of the basketball's velocity the instant before it reaches the ground, and the height to which the tennis ball rebound.
A tennis ball of mass 57.0 g is held just above a basketball of mass 590 g. With their centers vertically aligned, both balls are released from rest at the same time, falling through a distance of 1.20 m, as shown in Figure P6.45. (a) Find the magnitude of the basketball’s velocity the instant before the basketball reaches the ground. (b) Assume that an elastic collision with the ground instantaneously reverses the velocity of the basketball so that it collides with the tennis ball just above it. To what height does the tennis ball rebound?
A skateboarder with his board can be modeled as a particle of mass 80.0 kg, located at his center of mass. As shown in the figure below, the skateboarder starts from rest in a crouching position at one lip of a half-pipe (point). On his descent, the skateboarder moves without friction so
that his center of mass moves through one quarter of a circle of radius 6.20 m.
i
(a) Find his speed at the bottom of the half-pipe (point Ⓡ).
m/s
(b) Immediately after passing point Ⓑ, he stands up and raises his arms, lifting his center of mass and essentially "pumping" energy into the system. Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.71 m, reaching point D. As he
passes through point ①, the speed of the skateboarder is 5.37 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy when he stood up at point Ⓑ?
]
(c) How high above point ① does he rise?
m
A 31.0-kg child on a 3.00-m-long swing is released from rest when the ropes of the swing make an angle of 29.0° with the vertical.
(a) Neglecting friction, find the child's speed at the lowest position.
m/s
(b) If the actual speed of the child at the lowest position is 2.40 m/s, what is the mechanical energy lost due to friction?
]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.