A 1.25-kg wooden block rests on a table over a large hole as in Figure P6.84. A 5.00-g bullet with an initial velocity v i is fired upward into the bottom of the block and remains in the block after the collision. The block and bullet rise to a maximum height of 22.0 cm. (a) Describe how you would find the initial velocity of the bullet using ideas you have learned in this topic, (b) Calculate the initial velocity of the bullet from the information provided.
A 1.25-kg wooden block rests on a table over a large hole as in Figure P6.84. A 5.00-g bullet with an initial velocity v i is fired upward into the bottom of the block and remains in the block after the collision. The block and bullet rise to a maximum height of 22.0 cm. (a) Describe how you would find the initial velocity of the bullet using ideas you have learned in this topic, (b) Calculate the initial velocity of the bullet from the information provided.
Solution Summary: The author explains how the initial velocity of the bullet can be found using the conservation of momentum and conserving mechanical energy.
A 1.25-kg wooden block rests on a table over a large hole as in Figure P6.84. A 5.00-g bullet with an initial velocity vi is fired upward into the bottom of the block and remains in the block after the collision. The block and bullet rise to a maximum height of 22.0 cm. (a) Describe how you would find the initial velocity of the bullet using ideas you have learned in this topic, (b) Calculate the initial velocity of the bullet from the information provided.
Point charges q1 = 50 µC and q2 = −25 µC are placed 1.0 m apart. What is the magnitude of the force on a third charge q3 = 40 µC placed midway between q1 and q2? (The prefix µ =10−6 C.)
The de-excitation of a state occurs by competing emission and relaxation processes. If the relaxation mechanisms are very effective:a) the emission of radiation is largeb) the emission of radiation is smallc) the emission occurs at a shorter wavelengthd) the de-excitation occurs only by emission processes
m
C
A block of mass m slides down a ramp of height hand
collides with an identical block that is initially at rest.
The two blocks stick together and travel around a loop of
radius R without losing contact with the track. Point A is
at the top of the loop, point B is at the end of a horizon-
tal diameter, and point C is at the bottom of the loop, as
shown in the figure above. Assume that friction between
the track and blocks is negligible.
(a) The dots below represent the two connected
blocks at points A, B, and C. Draw free-body dia-
grams showing and labeling the forces (not com
ponents) exerted on the blocks at each position.
Draw the relative lengths of all vectors to reflect
the relative magnitude of the forces.
Point A
Point B
Point C
(b) For each of the following, derive an expression in
terms of m, h, R, and fundamental constants.
i. The speed of moving block at the bottom of
the ramp, just before it contacts the stationary
block
ii. The speed of the two blocks immediately…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.