
College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 9CQ
As a skater forms a circle, what force is responsible for making her turn? Use a free body diagram in your answer.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
PROBLEM 2
A cube of mass m is placed in a rotating funnel.
(The funnel is rotating around the vertical axis shown
in the diagram.) There is no friction between the cube
and the funnel but the funnel is rotating at just the
right speed needed to keep the cube rotating with the
funnel. The cube travels in a circular path of radius r,
and the angle between the vertical and the wall of the
funnel is 0. Express your answers to parts (b) and (c)
in terms of m, r, g, and/or 0.
(a) Sketch a free-body diagram for the cube. Show
all the forces acting on it, and show the appropriate
coordinate system to use for this problem.
(b) What is the normal force acting on the cube?
FN=mg58
(c) What is the speed v of the cube?
(d) If the speed of the cube is different from what you
determined in part (c), a force of friction is necessary
to keep the cube from slipping in the funnel. If the
funnel is rotating slower than it was above, draw a
new free-body diagram for the cube to show which
way friction…
Circular turns of radius r in a race track are often banked at an angle θ to allow the cars to achieve higher speeds around the turns. Assume friction is not present.
Write an expression for the tan(θ) of a car going around the banked turn in terms of the car's speed v, the radius of the turn r, and g so that the car will not move up or down the incline of the turn.
tan(θ) =
The character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?
Chapter 6 Solutions
College Physics
Ch. 6 - There an analogy between rotational and physical...Ch. 6 - Can centripetal acceleration change the speed of...Ch. 6 - If you wish to reduce the stress (which related to...Ch. 6 - Define centripetal force. Can any type of force...Ch. 6 - If centripetal force is directed toward the...Ch. 6 - Pace car drivers routinely cut corners as shown in...Ch. 6 - A number of amusement parks have rides that make...Ch. 6 - What is the direction of the force exerted by the...Ch. 6 - As a skater forms a circle, what force is...Ch. 6 - Suppose a child is riding on a merry-go-round at a...
Ch. 6 - Do you feel yourself thrown to either side when...Ch. 6 - Suppose a mass is moving in a circular path on a...Ch. 6 - When a toilet is flushed or a sink is drained,...Ch. 6 - Is there a real force that throws water from...Ch. 6 - In one amusement park ride, riders enter a large...Ch. 6 - Actin at a distance, such as is the case for...Ch. 6 - Two friends are having a conversation. Anna says a...Ch. 6 - A frame of reference placed at the center of the...Ch. 6 - Action at a distance, such as is the case for...Ch. 6 - Two friends are having a conversation. Anna says a...Ch. 6 - Draw a free body diagram for a satellite in an...Ch. 6 - Newton's laws of motion and gravity were among the...Ch. 6 - In what frame(s) of reference are Kepler's laws...Ch. 6 - Semi-trailer trucks have an odometer on one hub of...Ch. 6 - Microwave ovens rotate at a rate of about 6...Ch. 6 - An automobile with 0.260 m radius tires travels...Ch. 6 - (a) What is the period of rotation of Earth in...Ch. 6 - A baseball pitcher brings his arm forward during a...Ch. 6 - In lacrosse, a ball is thrown from a net on the...Ch. 6 - A truck with 0.420-m-radius tires travels at 32.0...Ch. 6 - Integrated Concepts When kicking a football, the...Ch. 6 - Construct Your Own Problem Consider an amusement...Ch. 6 - A fairground ride spins its occupants inside a...Ch. 6 - A runner taking part in the 200 m dash must run...Ch. 6 - Taking the age of Earth to be about 4109 years and...Ch. 6 - The propeller of a World War Il fighter plane is...Ch. 6 - An ordinary workshop grindstone has a radius of...Ch. 6 - Helicopter blades withstand tremendous stresses....Ch. 6 - Olympic ice skaters are able to spin at about 5...Ch. 6 - What percentage of the acceleration at Earth's...Ch. 6 - Verify that the linear speed of an ultracentrifuge...Ch. 6 - A rotating space station is said to create...Ch. 6 - At takeoff, a commercial jet has a 60.0 m/s speed....Ch. 6 - Integrated Concepts Riders in an amusement park...Ch. 6 - Unreasonable Results A mother pushes her child on...Ch. 6 - (a) A 22.0 kg child is riding a playground...Ch. 6 - Calculate the centripetal force on the end of a...Ch. 6 - What is the ideal banking angle for a gentle turn...Ch. 6 - What is the ideal speed to take a 100 m radius...Ch. 6 - (a) What is the radius of a bobsled turn banked at...Ch. 6 - Part of riding a bicycle involves leaning at the...Ch. 6 - A large centrifuge, like the one shown in Figure...Ch. 6 - Integrated Concepts If a car takes a banked curve...Ch. 6 - Modern roller coasters have vertical loops like...Ch. 6 - Unreasonable Results (a) Calculate the minimum...Ch. 6 - (a) Calculate Earth's mass given the acceleration...Ch. 6 - (a) Calculate the magnitude of the acceleration...Ch. 6 - (a) What is the acceleration due to gravity on the...Ch. 6 - (a) Calculate the acceleration due to gravity on...Ch. 6 - The Moon and Earth rotate about their common...Ch. 6 - Solve part (b) of Example 6.6 using ac=v2/r.Ch. 6 - Astrology, that unlikely and vague pseudoscience,...Ch. 6 - The existence of the dwarf planet Pluto was...Ch. 6 - (a) The Sun orbits the Milky Way galaxy once each...Ch. 6 - Unreasonable Result A mountain 10.0 km from a...Ch. 6 - A geosynchronous Earth satellite is one that has...Ch. 6 - Calculate the mass of the Sun based on data for...Ch. 6 - Find the mass of Jupiter based on data for the...Ch. 6 - Find the ratio of the mass of Jupiter to that of...Ch. 6 - Astronomical observations of our Milky Way galaxy...Ch. 6 - Integrated Concepts Space debris left from old...Ch. 6 - Unreasonable Results (a) Based on Kepler's laws...Ch. 6 - Construct Your Own Problem On February 14, 2000,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. CAUTION Why is genetic drift aptly named?
a. It causes allele frequencies to drift up or down randomly.
b. I...
Biological Science (6th Edition)
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
WHAT IF? As a cell begins the process of dividing, its chromosomes become shorter, thicker, and individually vi...
Campbell Biology in Focus (2nd Edition)
5. A 65 kg gymnast wedges himself between two closely spaced vertical walls by pressing his hands and feet ag...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Slinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed with no initial velocity and reaches the floor right as his velocity hits zero again. How high is the bed? What is Woody’s velocity halfway down? Enter just the magnitude of velocity.arrow_forwardNo chatgpt pls will upvotearrow_forwardA positive charge of 91 is located 5.11 m to the left of a negative charge 92. The charges have different magnitudes. On the line through the charges, the net electric field is zero at a spot 2.90 m to the right of the negative charge. On this line there are also two spots where the potential is zero. (a) How far to the left of the negative charge is one spot? (b) How far to the right of the negative charge is the other?arrow_forward
- A charge of -3.99 μC is fixed in place. From a horizontal distance of 0.0423 m, a particle of mass 7.31 x 103 kg and charge -9.76 µC is fired with an initial speed of 84.1 m/s directly toward the fixed charge. How far does the particle travel before its speed is zero?arrow_forwarda) What is the minimum tension in N that the cable must be able to support without breaking? Assume the cable is massless. T = b) If the cable can only support a tension of 10,000 N what is the highest mass the ball can have in kg? mm =arrow_forwardCurve Fitter CURVE FITTER Open Update Fit Save New Exclusion Rules Select Validation Data Polynomial Exponential Logarithmic Auto Fourier Fit Fit Duplicate Data Manual FILE DATA FIT TYPE FIT Harmonic Motion X us 0.45 mi ce 0.4 0.35 0.3 0.25 0.2 Residuals Plot Contour Plot Plot Prediction Bounds None VISUALIZATION Colormap Export PREFERENCES EXPORT Fit Options COA Fourier Equation Fit Plot x vs. t -Harmonic Motion a0+ a1*cos(x*w) + b1*sin(x*w) Number of terms Center and scale 1 ▸ Advanced Options Read about fit options Results Value Lower Upper 0.15 a0 0.1586 0.1551 0.1620 a1 0.0163 0.0115 0.0211 0.1 b1 0.0011 -0.0093 0.0115 W 1.0473 0.9880 1.1066 2 8 10 t 12 14 16 18 20 Goodness of Fit Value Table of Fits SSE 0.2671 Fit State Fit name Data Harmonic Motion x vs. t Fit type fourier1 R-square 0.13345 SSE DFE 0.26712 296 Adj R-sq 0.12467 RMSE 0.030041 # Coeff Valic R-square 0.1335 4 DFE 296.0000 Adj R-sq 0.1247 RMSE 0.0300arrow_forward
- What point on the spring or different masses should be the place to measure the displacement of the spring? For instance, should you measure to the bottom of the hanging masses?arrow_forwardLet's assume that the brightness of a field-emission electron gun is given by β = 4iB π² d²α² a) Assuming a gun brightness of 5x108 A/(cm²sr), if we want to have an electron beam with a semi-convergence angle of 5 milliradian and a probe current of 1 nA, What will be the effective source size? (5 points) b) For the same electron gun, plot the dependence of the probe current on the parameter (dpa) for α = 2, 5, and 10 milliradian, respectively. Hint: use nm as the unit for the electron probe size and display the three plots on the same graph. (10 points)arrow_forwardi need step by step clear answers with the free body diagram clearlyarrow_forward
- No chatgpt pls will upvotearrow_forwardReview the data in Data Table 1 and examine the standard deviations and 95% Margin of Error calculations from Analysis Questions 3 and 4 for the Acceleration of the 1st Based on this information, explain whether Newton’s Second Law of Motion, Equation 1, was verified for your 1st Angle. Equation: SF=ma Please help with explaining the information I collected from a lab and how it relates to the equation and Newton's Second Law. This will help with additional tables in the lab. Thanks!arrow_forwardPlease solve and answer the problem step by step with explanations along side each step stating what's been done correctly please. Thank you!! ( preferably type out everything)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY