Concept explainers
Water flows at mass flow rate m through a 90° vertically oriented elbow of elbow radius R (to the centerline) and lime, pipe diameter D as sketched. The outlet s exposed to the atmospheric. (Hint: This means that the pressure at the outlet is atmospheric pressure.) The pressure at the inlet must obviously be higher than atmospheric in order to push the water through the elbow and to raise the elevation of the water. The irreversible head loss through the elbow is hL. Assume that the kinetic energy flux correction factor a is not unity, but is the same at the inlet and outlet of the elbow
(a) Using the head form of the energy equation, derive an expression for the gage pressure
(b) Plug in these numbers and solve for
(c) Neglecting the weight of the elbow itself and the weight of the water in the elbow, calculator the x and z components of the anchoring force required to hold the elbow in place. Your final answer for the anchoring force should be given as a
(d) Repeat Part (c) without neglecting the weight of the water in the elbow. Is it reasonable to neglect the weight of the water in this problem?

(a)
The expression of gage pressure using the head form of energy equation.
Answer to Problem 96P
The expression of gage pressure is
Explanation of Solution
Given information:
The elbow is
Write the expression of Bernoullis equation at inlet and outlet of elbow pipe.
Here, the pressure at inlet is
Write the expression of gage pressure.
Here, the inlet pressure is
Consider, the velocity of flow at inlet and outlet is same i.e.
Substitute,
Substitute
Conclusion:
The expression of gage pressure is

(b)
The gage pressure.
Answer to Problem 96P
The gage pressure is
Explanation of Solution
Given information:
The density of the fluid is
Calculation:
Substitute
Conclusion:
The gage pressure is

(c)
The
Answer to Problem 96P
The
The
Explanation of Solution
Given information:
Neglect the weight of elbow and weight of the water.
Write the expression of
Here, the momentum flux correction factor is
Substitute,
Write the expression of
Here, the momentum flux correction factor is
Substitute
Write the expression of mass flow rate of fluid.
Here, the density of the fluid is
Write the expression of area of flow.
Here, the diameter of the pipe is
Calculation:
Substitute
Substitute
Substitute
So, the force is acting on opposite direction.
Substitute
Conclusion:
The
The

(d)
The
Answer to Problem 96P
The
The
Explanation of Solution
Given information:
The weight of water in the elbow is considered.
Write the expression of
Here, the momentum flux correction factor is
Substitute,
Write the expression of
Here, the momentum flux correction factor is
Substitute
Write the expression of weight of water in the elbow.
Here, the mass of water is
Write the expression of mass of water.
Here, the density of the fluid is
Write the expression of volume of water.
Here, the area of flow is
Calculation:
Substitute
So, the force is acting on opposite direction.
Substitute
Substitute
Substitute
Substitute
Conclusion:
The
The
Want to see more full solutions like this?
Chapter 6 Solutions
FLUID MECHANICS FUND. (LL)-W/ACCESS
- Sketch and describe hatch coamings. Describe structrual requirements to deck plating to compensate discontinuity for corners of a hatch. Show what is done to the deck plating when the decks are cut away and include the supporting members.arrow_forwardAn Inclining experiment done on a ship thats 6500 t, a mass of 30t was moved 6.0 m transvesly causing a 30 cm deflection in a 6m pendulum, calculate the transverse meta centre height.arrow_forwarda ship 150 m long and 20.5 m beam floats at a draught of8 m and displaces 19 500 tonne. The TPC is 26.5 and midshipsection area coefficient 0.94. Calculate the block, prismatic andwaterplane area coefficients.arrow_forward
- A vessel loads 680 t fuel between forward and aft deep tanks. centre of gravity of forward tank is 24m forward of ships COG. centre to centre between tanks is 42 m. how much in each tank to keep trim the samearrow_forwardBeam of a vessel is 11% its length. Cw =0.72. When floating in SW of relative denisity 1.03, TPC is 0.35t greater than in freshwater. Find the length of the shiparrow_forwardAn inclining experiment was carried out on a ship of 4000tonne displacement, when masses of 6 tonne were moved transverselythrough 13.5 m. The deflections of a 7.5 m pendulurnwere 81, 78, 85, 83, 79, 82, 84 and 80 mm respectively.Caiculate the metacentric height.arrow_forward
- A ship of 10 000 tonne displacement has a waterplanearea of 1300 m2. The ship loads in water of 1.010 t/m3 andmoves into water of 1.026 t/m3. Find the change in meandraughtarrow_forwardA ship of 7000 tonne displacement has a waterplane areaof 1500 m2. In passing from sea water into river water of1005 kg/m3 there is an increase in draught of 10 cm. Find the Idensity of the sea water.arrow_forwardA ship has 300 tonne of cargo in the hold, 24 m forward ofmidships. The displacement of the vessel is 6000 tonne and its centre of gravity is 1.2 m forward of midships.Find the new position of the centre of gravity if this cargo ismoved to an after hold, 40 m from midshipsarrow_forward
- Sketch and describe how ships are supported in dry dock. When and where does the greatest amount of stresses occur?arrow_forwardSketch and desribe a balanced rudder and how it is suspendedarrow_forwardA ship 140 m long and 18 m beam floats at a draught of9 m. The immersed cross-sectionai areas at equai intervais are 5,60, 116, 145, 152, 153, 153, 151, 142, 85 and 0 m2 respectively.Calculate:(a) displacement(b) block coefficient(c) midship section area coefficient(d) prismatic coefficient.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





