FLUID MECHANICS FUND. (LL)-W/ACCESS
4th Edition
ISBN: 9781266016042
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 54P
The impeller of a centrifugal pump has inner and outer diameters of 15 and 35 cm, respectively, and a flow rate of 0.15 m3/s at a rotational speed of 1400 rpm. The blade width of the impeller is 8 cm at the inlet and 3.5 cm at the outlet. If water enters the impeller in the radial direction and exits at an angle of 60° from the radial direction, determine the minimum power requirement for the pump.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Don't give handwritten
29Water enters the impeller of a centrifugal pump radially at a flow rate of 250 L/min. The rotational speed of the impeller shaft is given as 400 rpm. Since the outer diameter of the impeller is 60 cm and the tangential component of the output velocity at this point is 55 m/s, calculate the torque (Nm) coming to the impeller.
A centrifugal pump impeller has a diameter of 15 cm at the inlet and a blade width of 6.3 cm. The radius at the exit is 35 cm and the wing width is 3.2 cm. Centrifugal pump rotates at 1500 rpm. The water enters the fins in a normal (perpendicular) manner and leaves 38 ° deviating from the radial direction. Volumetric flow rate is given as 0.25 m ^ 3 / s. Find the required shaft power for the centrifugal pump, assuming the efficiency as 100%. (P = water = 998 kg / m ^ 3)
Chapter 6 Solutions
FLUID MECHANICS FUND. (LL)-W/ACCESS
Ch. 6 - Express Newton’s second law of motion for rotating...Ch. 6 - Express Newton’s first, second, and third laws.Ch. 6 - Is momentum a vector? If so, in what direction...Ch. 6 - Express the conservation of momentum principle....Ch. 6 - How do surface forces arise in the momentum...Ch. 6 - Explain the importance of the Reynolds transport...Ch. 6 - What is the importance of the momentum-flux...Ch. 6 - Write the momentum equation for steady...Ch. 6 - In the application of the momentum equation,...Ch. 6 - Two firefighters are fighting a fire with...
Ch. 6 - A rocket in space (no friction or resistance to...Ch. 6 - Describe in terms of momentum and airflow how a...Ch. 6 - Does it take more, equal, or less power for a...Ch. 6 - In a given location, would a helicopter require...Ch. 6 - Describe body forces and surface forces, and...Ch. 6 - A constant-velocity horizontal water jet from a...Ch. 6 - A horizontal water jet of constant velocity V from...Ch. 6 - A horizontal water jet from a nozzle of constant...Ch. 6 - A 2.5-cm-diameter horizontal water jet with a...Ch. 6 - A 90 elbow in a horizontal pipe is used to direct...Ch. 6 - Repeat Prob. 6-20 for the case of another...Ch. 6 - A horizontal water jet impinges against a vertical...Ch. 6 - Water enters a 7-cm-diameter pipe steadily with a...Ch. 6 - A reducing elbow in a horizontal pipe is used to...Ch. 6 - Repeat Prob. 6-24 for the case of = 125°.Ch. 6 - A 100-ft3/s water jet is moving in the positive...Ch. 6 - Reconsider Prob. 6-26E. Using appropriate...Ch. 6 - Commercially available large wind turbines have...Ch. 6 - A fan with 24-in-diameter blades moves 2000 cfm...Ch. 6 - A 3-in-diameter horizontal jet of water, with...Ch. 6 - Firefighters are holding a nozzle at the end of a...Ch. 6 - A 5-cm-diameter horizontal jet of water with a...Ch. 6 - Prob. 33PCh. 6 - A 3-in-diameter horizontal water jet having a...Ch. 6 - An unloaded helicopter of mass 12,000 kg hovers at...Ch. 6 - Prob. 36PCh. 6 - Water is flowing through a 10-cm-diameter water...Ch. 6 - Water flowing in a horizontal 25-cm-diameter pipe...Ch. 6 - Prob. 39PCh. 6 - Water enters a centrifugal pump axially at...Ch. 6 - An incompressible fluid of density and viscosity ...Ch. 6 - Consider the curved duct of Prob. 6-41, except...Ch. 6 - As a follow-up to Prob. 6-41, it turns out that...Ch. 6 - Prob. 44PCh. 6 - The weight of a water tank open to the atmosphere...Ch. 6 - A sluice gate, which controls flow rate in a...Ch. 6 - A room is to be ventilated using a centrifugal...Ch. 6 - How is the angular momentum equation obtained from...Ch. 6 - Prob. 49CPCh. 6 - Prob. 50CPCh. 6 - Prob. 51CPCh. 6 - A large lawn sprinkler with two identical arms is...Ch. 6 - Prob. 53EPCh. 6 - The impeller of a centrifugal pump has inner and...Ch. 6 - Water is flowing through a 15-cm-diameter pipe...Ch. 6 - Prob. 56PCh. 6 - Repeat Prob. 6-56 for a water flow rate of 60 L/s.Ch. 6 - Prob. 58PCh. 6 - Water enters the impeller of a centrifugal pump...Ch. 6 - A lawn sprinkler with three identical antis is...Ch. 6 - Prob. 62PCh. 6 - The impeller of a centrifugal blower has a radius...Ch. 6 - An 8-cm-diameter horizontal water jet having a...Ch. 6 - Water flowing steadily at a rate of 0.16 m3/s is...Ch. 6 - Repeat Prob. 6-66 by taking into consideration the...Ch. 6 - A 16-cm diameter horizontal water jet with a speed...Ch. 6 - Water enters vertically and steadily at a rate of...Ch. 6 - Repeal Prob. 6-69 for the case of unequal anus-the...Ch. 6 - Prob. 71PCh. 6 - Prob. 72PCh. 6 - A spacecraft cruising in space at a constant...Ch. 6 - A 60-kg ice skater is standing on ice with ice...Ch. 6 - A 5-cm-diameter horizontal jet of water, with...Ch. 6 - Water is flowing into and discharging from a pipe...Ch. 6 - Indiana Jones needs So ascend a 10-m-high...Ch. 6 - Prob. 79EPCh. 6 - A walnut with a mass of 50 g requires a force of...Ch. 6 - Prob. 81PCh. 6 - Prob. 82PCh. 6 - A horizontal water jet of constant velocity V...Ch. 6 - Show that the force exerted by a liquid jet on a...Ch. 6 - Prob. 85PCh. 6 - Prob. 86PCh. 6 - Water enters a mixed flow pump axially at a rate...Ch. 6 - Prob. 88PCh. 6 - Water enters a two-armed lawn sprinkler along the...Ch. 6 - Prob. 91PCh. 6 - Prob. 92PCh. 6 - Prob. 93PCh. 6 - Prob. 94PCh. 6 - A water jet strikes a moving plate at velocity...Ch. 6 - Water flows at mass flow rate m through a 90°...Ch. 6 - Prob. 97PCh. 6 - Water shoots out of a Iar2e tank sitting a cart...Ch. 6 - Prob. 99PCh. 6 - Prob. 100PCh. 6 - Prob. 101PCh. 6 - Consider water flow through a horizontal, short...Ch. 6 - Consider water flow through a horizontal. short...Ch. 6 - Prob. 104PCh. 6 - Prob. 105PCh. 6 - Prob. 106PCh. 6 - The velocity of wind at a wind turbine is measured...Ch. 6 - The ve1ocity of wind at a wind turbine is measured...Ch. 6 - Prob. 109PCh. 6 - Prob. 110PCh. 6 - Prob. 111PCh. 6 - Consider the impeller of a centrifugal pump with a...Ch. 6 - Prob. 113PCh. 6 - Prob. 114P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please show all working outarrow_forwardA centrifugal pump pumps water at a flow rate of 7 m³/s to a height of 10 m. If the pump works at the best efficiency point, find the pump impeller diameter, pump speed, the best efficiency value of the pump, the head at the best efficiency value, and the specific speed of the pump, given that CQ=0.15 CH=6 CP=0.75.arrow_forwardI need the answer quicklyarrow_forward
- A centrifugal pump impeller has a diameter of 1 m and speed of 10 m/s. Water enters radially and discharges with a velocity whose radial component is 2.3 m/s. Backward vanes make an angle of 32º at exit. If the discharge through the pump is 4.8 m³/min, determine 4.1. Horsepower of the pump Turning moment of the shaft 4.2.arrow_forwardA multi stage pump is required to deliver of 2 l/s water against a maximum discharge head of 240 m. The diameter of radial bladed impeller should not be more than 15 cm. Assume a speed of 2800 rpm. Determine the impeller diameter, and power. Overall efficiency is 0.7.arrow_forwardA centrifugal pump with a 30 cm diameter impeller requires a power input of 45 kW when the flow rate is 12 kL/min against an 18 m head. The impeller is changed to one with a 25 cm diameter. Determine The expected flow rate. Actual head. (i) (ii) (iii) Input power if the pump speed remains the same.arrow_forward
- A centrifugal pump is to be placed at the bottom of a vertical shaft 350 m deep to deal with an inflow of water at the rate of 22 l/s. The choice lies between three pumps, one of 115 kW, one of 185 kW and one of 300 kW. Each pump has efficiency of 85%. 1. For each pump, calculate the approximate rate (litres/s) that can be pumped (ignore the friction and velocity heads) 2. For each pump, calculate the number of hours the pump would have to run (during a 24-hour day) to handle the inflow. 3. Which pump should be installed if the capacity should be at least double that required in case of flooding?arrow_forwardA centrifugal pump having four stages in parallel delivers 12 kiloLiters per minute of liquid against a head of 25m. The diameter of the impeller being 24 cm has a speed of 1800 rpm. A pump is to be made up with a number of stages in series. In similar construction to that of the first pump to run at 1250 rpm and to deliver 15 kiloLiters/min against a total head of 250 m, find the number of stages required in this case. Select the correct response: 2. 4) 3.arrow_forwardThe length and diameter of a suction pipe of a single-acting reciprocating pump are 5m and 10 cm respectively. The pump has a plunger of diameter 15cm and a stroke length of 35 cm. The center of the pump is 3 m above the water surface in the pump. The atmospheric pressure head is 10.3 m of water and pump is running at 3r rpm. Determine: a. Pressure head due to acceleration at the beginning of the suction stroke, b. maximum pressure head due to acceleration and c. pressure head in the cylinder at the beginning and at the end of the strokearrow_forward
- A 70 cm diameter centrifugal pump which is dynamically similar to the tested pump tabulated above, is delivering water at 1.26 m³/s against a 100m head. Determine the operating speed in rev/min and the required power consumption. Note that the pump is not necessarily running at the design point.arrow_forwardA pump with a shaft input of 8.62 kw and an efficiency of 72 % is connected in a water line carrying 150 li / s. The pump has a 15 cm diameter suction line and a 12 cm diameter discharge line. The suction line enters the pump 2.3 m below the discharge line. For a suction pressure of 84.6 KN/m², calculate the pressure at the discharge flange.arrow_forwardPlease answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license