Use the values of Δ H f ° in Appendix 4 to calculate ∆ H º for the following reactions. a. b. Ca 3 ( PO 4 ) ( s ) + 3 H 2 SO 4 ( l ) → 3 CaSO 4 ( s ) + 2 H 3 PO 4 ( l ) c. NH 3 ( g ) + HCl ( g ) → NH 4 Cl ( s )
Use the values of Δ H f ° in Appendix 4 to calculate ∆ H º for the following reactions. a. b. Ca 3 ( PO 4 ) ( s ) + 3 H 2 SO 4 ( l ) → 3 CaSO 4 ( s ) + 2 H 3 PO 4 ( l ) c. NH 3 ( g ) + HCl ( g ) → NH 4 Cl ( s )
Use the values of
Δ
H
f
°
in Appendix 4 to calculate ∆Hº for the following reactions.
a.
b.
Ca
3
(
PO
4
)
(
s
)
+
3
H
2
SO
4
(
l
)
→
3
CaSO
4
(
s
)
+
2
H
3
PO
4
(
l
)
c.
NH
3
(
g
)
+
HCl
(
g
)
→
NH
4
Cl
(
s
)
a)
Expert Solution
Interpretation Introduction
Interpretation: Standard enthalpy change has calculated for given reaction.
Concept introduction
Standard Enthalpy change (ΔH0): The heat change when molar quantities of reactants as specified by chemical equation to form a product at standard conditions. Standard condition: 250C and 1 atmosphere pressure.
Interpretation: Standard enthalpy change has calculated for given reaction.
Concept introduction
Standard Enthalpy change (ΔH0): The heat change when molar quantities of reactants as specified by chemical equation to form a product at standard conditions. Standard condition: 250C and 1 atmosphere pressure.
Standard state for given compound in the reaction are,
Substance and state ΔHf0kJ/ mole
NH3(g) -46
O2(g) 0
CH4(g) -75
HCN(g) -135.1
H2O(g) -242
Ca(PO4)2(s) -4126H2SO4(l) -814
CaSO4(s) -1433
H3PO4(s) -1267
HCl(g) -92
NH4Cl(s) -314
The standard state of ammonia gas, oxygen, methane, hydrogen cyanide and water vapour are given. By substituting the values in the standard enthalpy change equation the standard enthalpy change for the reaction calculated as -940kJ/mol.
The standard state of some compounds which present in the reaction are given. By substituting the values in the standard enthalpy change equation, the standard enthalpy change for the reaction calculated as -265kJ.
c)
Expert Solution
Interpretation Introduction
Interpretation: Standard enthalpy change has calculated for given reaction.
Concept introduction
Standard Enthalpy change (ΔH0): The heat change when molar quantities of reactants as specified by chemical equation to form a product at standard conditions. Standard condition: 250C and 1 atmosphere pressure.
Answer to Problem 79E
NH3(g)+HCl(g)→NH4Cl(s)ΔH0=-176kJ
Explanation of Solution
Given data
Standard state for given compound in the reaction are,
Substance and state ΔHf0kJ/ mole
NH3(g) -46
O2(g) 0
CH4(g) -75
HCN(g) -135.1
H2O(g) -242
Ca(PO4)2(s) -4126H2SO4(l) -814
CaSO4(s) -1433
H3PO4(s) -1267
HCl(g) -92
NH4Cl(s) -314
To calculate standard enthalpy change.
The balanced equation is,
NH3(g)+HCl(g)→NH4Cl(s)ΔH0=-176kJ
ΔH0= ∑np ΔHf0,product−∑nr ΔHf0,reactant
=[1(-314kJ)]-[1(-46kJ)+1(-92kJ)]
=-176kJ
The standard state of some compounds which present in the reaction are given. By substituting the values in the standard enthalpy change equation, the standard enthalpy change for the reaction calculated as -176kJ.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
(f) SO:
Best Lewis Structure
3
e group geometry:_
shape/molecular geometry:,
(g) CF2CF2
Best Lewis Structure
polarity:
e group arrangement:_
shape/molecular geometry:
(h) (NH4)2SO4
Best Lewis Structure
polarity:
e group arrangement:
shape/molecular geometry:
polarity:
Sketch (with angles):
Sketch (with angles):
Sketch (with angles):
1.
Problem Set 3b
Chem 141
For each of the following compounds draw the BEST Lewis Structure then sketch the molecule (showing
bond angles). Identify (i) electron group geometry (ii) shape around EACH central atom (iii) whether the
molecule is polar or non-polar (iv)
(a) SeF4
Best Lewis Structure
e group arrangement:_
shape/molecular geometry:
polarity:
(b) AsOBr3
Best Lewis Structure
e group arrangement:_
shape/molecular geometry:
polarity:
Sketch (with angles):
Sketch (with angles):
(c) SOCI
Best Lewis Structure
2
e group arrangement:
shape/molecular geometry:_
(d) PCls
Best Lewis Structure
polarity:
e group geometry:_
shape/molecular geometry:_
(e) Ba(BrO2):
Best Lewis Structure
polarity:
e group arrangement:
shape/molecular geometry:
polarity:
Sketch (with angles):
Sketch (with angles):
Sketch (with angles):
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY