Calculate Δ H ° for each of the following reactions, which occur in the atmosphere. a . C 2 H 4 ( g ) + O 3 ( g ) → CH 3 CHO( g ) + O 2 ( g ) b . O 3 ( g ) + NO( g ) → NO 2 ( g ) + O 2 ( g ) c. SO 3 ( g ) + H 2 O( l ) → H 2 SO 4 ( aq ) d . 2NO( g ) + O 2 (g) → 2SO 2 ( g )
Calculate Δ H ° for each of the following reactions, which occur in the atmosphere. a . C 2 H 4 ( g ) + O 3 ( g ) → CH 3 CHO( g ) + O 2 ( g ) b . O 3 ( g ) + NO( g ) → NO 2 ( g ) + O 2 ( g ) c. SO 3 ( g ) + H 2 O( l ) → H 2 SO 4 ( aq ) d . 2NO( g ) + O 2 (g) → 2SO 2 ( g )
Calculate ΔH° for each of the following reactions, which occur in the atmosphere.
a. C2H4(g) + O3(g) → CH3CHO(g) + O2(g)
b. O3(g) + NO(g) → NO2(g) + O2(g)
c. SO3(g) + H2O(l) → H2SO4(aq)
d. 2NO(g) + O2(g) → 2SO2(g)
(a)
Expert Solution
Interpretation Introduction
Interpretation: For given reactions, standard enthalpy change has to be calculated.
Concept introduction
Standard Enthalpy change (ΔH0): The heat change when molar quantities of reactants as specified by chemical equation to form a product at standard conditions. Standard condition:
250C and 1 atmosphere pressure.
Answer to Problem 115AE
C2H4(g)+O3(g)→CH3CHO(g)+O2(g)ΔH0= -361kJ
Explanation of Solution
Explanation
Given: Standard enthalpy value for given substance in the reactions are,
Substance and stateΔH0ΔHf0kJ / mol
O3(g) 143
H2O(l) -286
NO(g) 90
CH3CHO(g) -166
C2H4(g) 52
H2SO4(aq) -909
O2(g) 0
NO2(g) 34
SO3(g) -396
Standard enthalpy values for given substances in the reaction are shown above.
To calculate standard enthalpy change for given reaction.
The standard enthalpy change for given equation is -361 kJ .
ΔH0=
H0product-Hreactant0
=
-166kJ-[143kJ+52kJ]
=
-361kJ
C2H4(g)+O3(g)→CH3CHO(g)+O2(g)ΔH0= -361kJ
The standard enthalpy change for the reaction can be calculated by enthalpy of product versus enthalpy of reactant. The standard enthalpy values for given substances in a reaction are shown (Table.1). By substituting these values in standard enthalpy change equation the standard enthalpy change for the reaction has calculated as -361 k J .
(b)
Expert Solution
Interpretation Introduction
Interpretation: For given reactions, standard enthalpy change has to be calculated.
Concept introduction
Standard Enthalpy change (ΔH0): The heat change when molar quantities of reactants as specified by chemical equation to form a product at standard conditions. Standard condition:
250C and 1 atmosphere pressure.
Answer to Problem 115AE
O3(g)+NO(g)→NO2(g)+O2(g)ΔH0= -199 kJ
Explanation of Solution
Given: Standard enthalpy value for given substance in the reactions are,
Substance and stateΔH0ΔHf0kJ / mol
O3(g) 143
H2O(l) -286
NO(g) 90
CH3CHO(g) -166
C2H4(g) 52
H2SO4(aq) -909
O2(g) 0
NO2(g) 34
SO3(g) -396
Standard enthalpy values for given substances in the reaction are shown above.
To calculate standard enthalpy change for given equation.
The standard enthalpy change for given equation is -199kJ.
ΔH0=
H0product-Hreactant0
=34 kJ-[(90 kJ)+(143 kJ)]
= -199 kJ
O3(g)+NO(g)→NO2(g)+O2(g)ΔH0= -199 kJ
The standard enthalpy change for the reaction can be calculated by enthalpy of product versus enthalpy of reactant. The standard enthalpy values for given substances in a reaction are shown (Table.1). By substituting these values in standard enthalpy change equation the standard enthalpy change for the reaction has calculated as -199kJ.
(c)
Expert Solution
Interpretation Introduction
Interpretation: For given reactions, standard enthalpy change has to be calculated.
Concept introduction
Standard Enthalpy change (ΔH0): The heat change when molar quantities of reactants as specified by chemical equation to form a product at standard conditions. Standard condition:
250C and 1 atmosphere pressure.
Answer to Problem 115AE
SO3(g)+HO2(l)→H2SO4(aq)ΔH0= -227kJ
Explanation of Solution
Explanation:
Given: Standard enthalpy value for given substance in the reactions are,
Substance and stateΔH0ΔHf0kJ / mol
O3(g) 143
H2O(l) -286
NO(g) 90
CH3CHO(g) -166
C2H4(g) 52
H2SO4(aq) -909
O2(g) 0
NO2(g) 34
SO3(g) -396
Standard enthalpy values for given substances in the reaction are shown above.
To calculate standard enthalpy change for given equation.
The standard enthalpy change for given equation is -227kJ .
ΔH0=
H0product-Hreactant0
= -909kJ-[(-396kJ)+(-286kJ)]
= -227kJ
SO3(g)+HO2(l)→H2SO4(aq)ΔH0= -227kJ
The standard enthalpy change for the reaction can be calculated by enthalpy of product versus enthalpy of reactant. The standard enthalpy values for given substances in a reaction are shown (Table.1). By substituting these values in standard enthalpy change equation the standard enthalpy change for the reaction has calculated as -227kJ. .
(d)
Expert Solution
Interpretation Introduction
Interpretation: For given reactions, standard enthalpy change has to be calculated.
Concept introduction
Standard Enthalpy change (ΔH0): The heat change when molar quantities of reactants as specified by chemical equation to form a product at standard conditions. Standard condition:
250C and 1 atmosphere pressure.
Answer to Problem 115AE
2NO(g)+O2(g)→2NO2(g)ΔH0= -112kJ
Explanation of Solution
Explanation:
Given: Standard enthalpy value for given substance in the reactions are,
Substance and stateΔH0ΔHf0kJ / mol
O3(g) 143
H2O(l) -286
NO(g) 90
CH3CHO(g) -166
C2H4(g) 52
H2SO4(aq) -909
O2(g) 0
NO2(g) 34
SO3(g) -396
Standard enthalpy values for given substances in the reaction are shown above.
To calculate standard enthalpy change for given equation.
The standard enthalpy change for given equation is -112kJ.
2NO(g)+O2(g)→2NO2(g)ΔH0= -112 kJ
The standard enthalpy change for the reaction can be calculated by enthalpy of product versus enthalpy of reactant. The standard enthalpy values for given substances in a reaction are shown (Table.1). By substituting these values in standard enthalpy change equation the standard enthalpy change for the reaction has calculated as -112kJ .
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
How is the resonance structure formed to make the following reaction product. Please hand draw the arrows showing how the electrons move to the correct position. Do not use an AI answer. Please draw it yourself or don't bother.
Part II Calculate λ max of the following compounds using wood ward- Fiecer rules
a)
b)
c)
d)
e)
OH
OH
dissolved in dioxane
Br
Br
dissolved in methanol.
NH₂
OCH 3
OH
6. Match each of the lettered items in the column on
the left with the most appropriate numbered
item(s) in the column on the right. Some of the
numbered items may be used more than once
and some not at all.
a.
Z = 37
1.
b.
Mn
2.
C.
Pr
element in period 5 and group
14
element in period 5 and group
15
d. S
e. [Rn] 7s¹
f.
d block
metal
3. highest metallic character of all
the elements
4. paramagnetic with 5 unpaired
electrons
5. 4f36s2
6. isoelectronic with Ca²+ cation
7.
an alkaline metal
8. an f-block element
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY