Concept explainers
Suppose you wish to compare the work done by pushing a box on rollers up a ramp to the work done if you lift the box straight up to the same final height.
- a. What work is required to lift a 178-N box (about 40 lbs) up to a table which is 0.8 m off the floor?
- b. Let’s assume you also have a ramp available that makes an angle of 30° with the horizontal, as shown in the figure below. The ramp is 1.6 m long. The weight of the box (178 N) is due to the Earth’s pulling on the box. This 178 N is a force directed straight down. If you push it up a ramp, you are doing work against only the component of this weight along the ramp, which is 89 N, as shown in the diagram. How much work does it require to push the box up the ramp, assuming no friction?
- c. Which situation (pushing up the ramp or lifting straight up) requires more work?
- d. Which situation requires more force?
- e. For which situation is the distance moved greater?
- f. What is the change in the gravitational potential energy of the box for each situation?
- g. What advantage, if any, is there to using the ramp? Explain.
(a)
The work required to lift the box.
Answer to Problem 6SP
The work required to lift the box is
Explanation of Solution
Given info: The force over the box is
Write the expression for work done when force applied force and the displacement are in the same direction.
Here,
Since the gravitational force over the box is
Substitute
Conclusion:
Therefore, the work required to lift the box is
(b)
The amount of work required to push the box up the ramp.
Answer to Problem 6SP
The amount of work required to push the box up the ramp is
Explanation of Solution
Given info: The diagram is given in the question. The distance of the ramp is
Since the component of the weight (gravitational force) along the ramp is
Write the expression for work done when force applied force and the displacement are in the same direction.
Substitute
Conclusion:
Therefore, the amount of work required to push the box up the ramp is
(c)
Which among the situations, pushing up the ramp or lifting straight up required more work.
Answer to Problem 6SP
The amount of work required for both pushing up the ramp and lifting straight up is the same.
Explanation of Solution
Given info: The work required to lift the box is
It is obtained that the work required to lift the box straight up is
Conclusion:
Therefore, the amount of work required for both pushing up the ramp and lifting straight up is the same.
(d)
Which among the situations, pushing up the ramp or lifting straight up required more force.
Answer to Problem 6SP
Lifting the box straight up required more force than pushing it up the ramp.
Explanation of Solution
Given info: The force over the box is
Since the gravitational force over the box is
Conclusion:
Therefore, lifting the box straight up required more force than pushing it up the ramp.
(e)
Which among the situations, pushing up the ramp or lifting straight up, the distance moved is greater.
Answer to Problem 6SP
The distance moved is greater in pushing the box up the ramp than that in lifting the box straight up.
Explanation of Solution
Given info: The work done for both the situations is
By definition, the work done by a force is equal to the product of force and the displacement of the object in the direction of application of force. Here, in both the situations, the work done is same but the force required is greater in lifting the box up the ramp. The force is applied over a long distance when the box is pushed up the ramp.
Conclusion:
Therefore, the distance moved is greater in pushing the box up the ramp than that in lifting the box straight up.
(f)
The change in the gravitational potential energy of the box for lifting the box straight up and pushing it up the ramp.
Answer to Problem 6SP
The change in the gravitational potential energy of the box for lifting the box straight up and pushing it up the ramp is
Explanation of Solution
Given info: The height of the final position of the box is
Since the same box is considered in both the situations, the mass
Write the expression gravitational force on the object.
Here,
Substitute
Write the expression for the change in gravitational potential energy.
Here,
Since in both processes, the box is moved from the initial ground level to a final height of
Substitute
Thus, the change in the gravitational potential energy of the box for lifting the box straight up and pushing it up the ramp is
Conclusion:
Therefore, the change in the gravitational potential energy of the box for lifting the box straight up and pushing it up the ramp is
(g)
The advantage of using the ramp to move the box.
Answer to Problem 6SP
When the ramp is used to move the box to the given height, less force is required than lifting it straight up to the height and hence the strength of the person doing work can be conserved using the ramp.
Explanation of Solution
As obtained in the calculations, the force required to move the box to the final position is
Conclusion:
Therefore, when the ramp is used to move the box to the given height, less force is required than lifting it straight up to the height and hence the strength of the person doing work can be conserved using the ramp.
Want to see more full solutions like this?
Chapter 6 Solutions
Physics of Everyday Phenomena
- The chin-up is one exercise that can be used to strengthen the biceps muscle. This muscle can exert a force of approximately 8.00 102 N as it contracts a distance of 7.5 cm in a 75-kg male.3 (a) How much work can the biceps muscles (one in each arm) perform in a single contraction? (b) Compare this amount of work with the energy required to lift a 75-kg person 40. cm in performing a chin-up. (c) Do you think the biceps muscle is the only muscle involved in performing a chin-up?arrow_forward(a) How long will it take an 850-kg car with a useful power output of 40.0 hp (1hp=746W) to reach a speed of 15.0 m/s, neglecting friction? (b) How long will this acceleration take if the car also climbs a 3.00-m-high hill in the process?arrow_forward(a) What is the average useful power output of a person who does 6.00106 J of useful work in 8.00 h? (b) Working at this rate, how long will it take this person to lift 2000 kg of bricks 1.50 m to a platform? (Work done to lift his body can be omitted because it is not considered useful output here.)arrow_forward
- a shopper in a supermarket pushes a cart with a force of 35 N directed at an angle of 25 below the horizontal. The force is just sufficient to overcome various frictional forces, so the cart moves at constant speed, (a) Find the work done by the shopper as she moves down a 50.0-m length aisle, (b) What is the net work done on the cart? Why? (c) The shopper goes down the next aisle, pushing horizontally and maintaining the same speed as before. If the work done by frictional forces doesnt change, would the shoppers applied force be larger, smaller, or the same? What about the work done on the cart by the shopper?arrow_forwardIntegrated Concepts (a) What force must be supplied by an elevator cable to produce an acceleration of 0.800 m/s2 against a 200-N frictional force, if the mass of the loaded elevator is 1500 kg? (b) How much work is done by the cable in lifting the elevator 20.0 m? (c) What is the final speed of the elevator if it starts from rest? (d) How much work went into thermal energy?arrow_forwardA horizontal force of 20 N is required to keep a 5.0 kg box traveling at a constant speed up a frictionless incline for a vertical height change of 3.0 m. (a) What Is the work done by gravity dining this change in height? (b) What Is the work done by the normal force? (c) What is the work done by the horizontal farce?arrow_forward
- Physics Review A team of huskies performs 7 440 J of work on a loaded sled of mass 124 kg, drawing it from rest up a 4.60-m high snow-covered rise while the sled loses 1 520 J due to friction, (a) What is the net work done on the sled by the huskies and friction? (b) What is the change in the sleds potential energy? (c) What is the speed of the sled at the top of the rise? (See Section 5.5.)arrow_forward(a) What is the average useful power output of a person who does 6.00106J of useful work in 8.00 h? (b) Working at this rate, how long will it take this person to lift 2000 kg of bricks 1.50 m to a platform? (Work done to lift his body can be omitted because it is not considered useful output here.)arrow_forwardGive an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it does no work.arrow_forward
- A shopper pushes a grocery cart 20.0 m at constant speed on level ground, against a 35.0 N frictional force. He pushes in a direction 25.0° below the horizontal. (a) What is the work done on the cart by friction? (b) What is the work done on the cart by the gravitational force? (c) What is the work done on the cart by the shopper? (d) Find the force the shopper exerts, using energy considerations. (e) What is the total work done on the cart?arrow_forwardA sled of mass 70 kg starts from rest and slides down a 10 incline 80 m long. It then travels for 20 m horizontally before starting back up an 8° incline. It travels 80 m along this incline before coming to rest. What is the magnitude of the net work done on the sled by friction?arrow_forwardAs a simple pendulum swings back and forth, the forces acting on the suspended object are the force of gravity, the tension in the supporting cord, and air resistance, (a) Which of these forces, if any, does no work on the pendulum? (b) Which of these forces does negative work at all times during the pendulums motion? (c) Describe the work done by the force of gravity while the pendulum is swinging.arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning