
Concept explainers
Suppose that a 300-g mass (0.30 kg) is oscillating at the end of a spring upon a horizontal surface that is essentially friction-free. The spring can be both stretched and compressed and has a spring constant of 400 N/m. It was originally stretched a distance of 12 cm (0.12 m) from its equilibrium (unstretched) position prior to release.
- a. What is its initial potential energy?
- b. What is the maximum velocity that the mass will reach in its oscillation? Where in the motion is this maximum reached?
- c. Ignoring friction, what are the values of the potential energy, kinetic energy, and velocity of the mass when the mass is 6 cm from the equilibrium position?
- d. How does the value of velocity computed in part c compare to that computed in part b? (What is the ratio of the values? This is interesting because even though you are midway between the equilibrium point and the maximum displacement, the velocity is much closer to the maximum value you found in part b.)
(a)

The initial potential energy of the spring.
Answer to Problem 4SP
The initial potential energy of the spring-mass system is
Explanation of Solution
Given info: The spring constant is
Write the expression for the elastic potential energy of a spring.
Here,
Substitute
Conclusion:
Therefore, the initial potential energy of the spring-mass system is
(b)

The maximum velocity that the mass will reach in its oscillation and the position where then system achieves maximum velocity.
Answer to Problem 4SP
The maximum velocity that the mass will reach in its oscillation is
Explanation of Solution
Given info: The mass hanged attached to the spring is
The maximum velocity will be at a point where the kinetic energy of the system is maximum. The maximum kinetic energy is obtained when all the potential energy stored in the state, is completely converted to the kinetic energy. Since the initial potential energy is
Write the expression for kinetic energy of an object.
Here,
Solve for
Substitute
The potential energy of the spring-mass system converts completely to kinetic energy when the system moves through the equilibrium position. Thus, the maximum velocity occurs as the mass moves through the equilibrium position.
Conclusion:
Therefore, the maximum velocity that the mass will reach in its oscillation is
(c)

The potential energy, kinetic energy and the velocity of the mass when the mass is
Answer to Problem 4SP
When the mass is
Explanation of Solution
Given info: The mass attached to spring is
Write the expression for the elastic potential energy of a spring.
Substitute
At a particular distance away from the equilibrium position, the system acquires some potential energy. Hence the kinetic energy at a particular position is obtained by subtracting the potential energy at that point from the maximum kinetic energy.
Thus, the kinetic energy at the given point is obtained as,
Write the expression for velocity from the expression for kinetic energy.
Substitute
Conclusion:
Therefore, when the mass is
(d)

The ratio of the values of velocity of the mass at the equilibrium position and the position
Answer to Problem 4SP
The ratio of the values of velocity of the mass at the position
Explanation of Solution
Given info: The velocity of the mass at the equilibrium position is
The ratio of the values of velocity of the mass at the position
Thus, the velocity of the mass at the position
Conclusion:
Therefore, the ratio of the values of velocity of the mass at the position
Want to see more full solutions like this?
Chapter 6 Solutions
Physics of Everyday Phenomena
- You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forward
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





